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Abstract

A pseudo random number generator (PRNG) is a deterministic al-
gorithm that produces numbers whose distribution is indistinguishable
from uniform. Such PRNG needs a short random seed to generate per-
fectly random numbers, but users donot have access to such random
short seed. So, in practice PRNG with entropy inputs is used. Ex-
amples of such PRNGs are the Linux’s PRNGs - /dev/random and
/dev/urandom. There has been some work in the recent past to for-
malize the notion and security definitions of PRNG with inputs. In
this report, we focus on these works and then present some new attacks
and insights into the Linux’s PRNG.

1 Introduction

Generating random numbers is integral to whole of cryptography. It is
required in various applications and protocols like key generation, nonce
generation, etc. Typically, cryptographers assume the users of such protocols
have access to perfect randomness and prove the security of their schemes
assuming this. But in practice, it is not possible for users to have access
to perfect randomness. Rather they use, what is called a pseudo random
number generator (PRNG). These PRNG are deterministic and when given
a short random seed can expand this seed into a longer pseudo-random
number. But, it is unrealistic to assume that users have access to such short
random seed. In a PRNG with input, the users store a secret random state
and have access to a (potentially biased) random source.

Linux’s /dev/random, /dev/urandom; Mac OS’s Yarrow and Microsoft Win-
dows’ Fortuna are examples of such PRNG with input. Linux’s PRNG was
first time incorporated into the linux kernel in 1994. But it was only in 2005
that Barak and Halevi ([1]) tried to formally model PRNG with inputs and
propose corresponding security notions. Since then there has been much
work to improve upon the model and provide better security guarantees.

The next section discusses some of the literature we found on the topic.
The following sections illustrate the modelling of PRNG with inputs and
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state the known security notions. Finally the last 2 sections contain the
description of the Linux PRNG with known and new attacks and insights.

Figure 1: Model of PRNG with entropy inputs

2 Related Work

Past work on PRNG with inputs defined 3 security notions with different
amount of powers being allowed to the adversary. These included

• Resiliance : an adversary must not be able to predict future PRNG
outputs even if he can influence the entropy source used to initialize
or refresh the internal state of the PRNG

• Forward security ( resp. backward security): an adversary must not be
able to predict past (resp. future) outputs even if he can compromise
the internal state of the PRNG.

In 2005, Barak and Halevi ([1]) formally modelled PRNG with inputs as
a pair of algorithms - (refresh,next) and introduced a new security notion
of robustness, that implied the previous 3 security notions. This property
actually assesses the behavior of a PRNG after compromise of its internal
state.

Further, in 2013, Dodis et al ([2]) improved upon the previous model and
made the adversary more stronger by removing the burden of entropy esti-
mation from the PRNG and allowing the adversary himself to specify the
entropy to the PRNG. This model is what has been elaborated in this re-
port. It is also worth mentioning here that this gives a lot of power to the
adversary in the sense that he can tell the prng the entropy estimate and
security after a state compromise is only expected when the adversary pro-
vides inputs of however low entropy s.t. the total entropy contained in the
inputs crosses some threshold value.

Also, in 2014, [3] proposed and addressed the problem whereby after a state
compromise the PRNG wants to block the output until sufficient entropy
has gathered. But any premature production of output will lead to a total
loss in the amount of entropy gathered till then. The main challenge in such
scenarios is to block without knowing the timing of the last compromise. [3]
formally models this problem and proposes a near optimal construction for
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the same using ideas from the Fortuna RNG. We will not be elaborating on
this problem in this report and will mainly try to focus on the Linux RNG
after formally modelling it.

3 PRNG with Input : Modelling and Security

3.1 Model

Definition : PRNG with input consists of three algorithms (setup, refresh, next)
and takes three arguments (n, l, p) ∈ N3 where n is the length of the state,
l is the length of the output generated by the PRNG and p is the length of
the input from the random source.

• setup : It is a probabilistic algorithm and outputs some public param-
eters seed for the generator.

• refresh : It is a deterministic algorithm that, takes seed, a state
S ∈ {0, 1}n and an input I ∈ {0, 1}p and outputs a new state S′ =
refresh(seed, S, I) ∈ {0, 1}n which may have some enhanced entropy
in the PRNG.

• next : It is also a detrministic algorithm that, takes seed and a state
S ∈ {0, 1}n outputs a pair (S′, R) = next(seed, S) where S′ ∈ {0, 1}n
denotes the new state andR ∈ {0, 1}l denotes the output of the PRNG.

3.2 Security

For the security notion, two adversarial entities are defined :- the attacker A
who has to distinguish the outputs generated by the PRNG from perfectly
random numbers with non-negligible probability and the distribution sam-
pler D whose task is to produce the inputs I1, I2, ... which are given to the
PRNG, have high entropy collectively and (somehow) help the attacker A
to break the security of PRNG.

3.2.1 Attacker

The attacker is assigned the task to distinguish between the two outputs
one from the PRNG and one from a (theoretical) perfect random generator
with a non-negligible probability using the help of the distribution sampler
D.

3.2.2 Distribution Sampler

It is basically a probabilistic algorithm which, given its current state σ,
outputs
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• σ′ new state for D.

• I ∈ {0, 1}p next input for the PRNG algorithm.

• γ Some entropy estimation for I

• z leakage about I given to A.

Suppose if qD is the maximum number of executions of D. Then D is
legitimate if :

H∞(Ij |I1, I2, ..., Ij−1, Ij+1, .., IqD , z1, z2, ..., zqD , γ1, γ2, ..., γqD) ≥ γj
∀j ∈ {1, 2, ..., qD} and (σi, Ii, γi, zi) = D(σi−1)

(1)

This is based on the assumption that at the start, all the outputs by the D
can be obtained. Now this equation tells us that given all the previous and
future outputs by the D, γj is the lower bound on the minimum entropy
possible for input Ij , i.e. the distribution sampler is legitimate only if he
gives the prng entropy estimates which are less than or equal to the actual
values.
In this model, γ is been given by the adversary but is not the case in general
PRNG’s as are used in the real life, example Linux’s PRNG or Windows
PRNG. They have their inherent entropy estimators which estimates the
entropy of the input. This is one of the stronger assumptions been made
in the model, which increases the power of the adversary from that pre-
sented in Barak and Halevi([1]). Also the work of the entropy estimator
is to block the PRNG from giving any output value until the state has an
accumulated entropy say, γ∗ which is some threshold value. The security
definition described by [2] does not try to verify if the claims coming from D
are legitimate or not, and builds on the assumption that they are legitimate
and provide security for that.

3.3 Security Notions

Four security notions for PRNG with input have been defined : Resilience
(RES), Forward (FWD), Backward (BWD) and Robustness (ROB). These
security notions are described on the game as shown below :
The attacker’s A goal here is to guess the correct value of b picked in the
initialize procedure which is initializing several important variables : cor-
ruption flag corrupt, fresh entropy counter c, state S and D′s initial state
σ.
Now to define the security notion, A has been given accesses to oracle de-
scribed below :
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Algorithm 1 proc.initialize

1: seed
$←− setup

2: σ ← 0
3: S

$←− {0, 1}n
4: c← n
5: corrupt← false

6: b
$←− {0, 1}

7: OUTPUT seed

Algorithm 2 proc.finalize

1: if b = b∗ then return 1
2: else return 0

Algorithm 3 proc.D-refresh

1: (σ, I, γ, z)
$←− D(σ)

2: S ← refresh(S, I)
3: c← c+ γ
4: if c ≥ γ∗ then
5: corrupt← false

6: OUTPUT (γ, z)

Algorithm 4 proc.next-ror

1: (S,R0)← next(S)

2: R1
$←− {0, 1}l

3: if corrupt = true then
4: c← 0
5: return R0

6: else
7: OUTPUT Rb

Algorithm 5 proc.get-next

1: (S,R)← next(S)
2: if corrupt = true then
3: c← 0
4: OUTPUT R

Algorithm 6 proc.get-state
1: c← 0
2: corrupt← true
3: OUTPUT S
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Algorithm 7 proc.set-state(S∗)

1: c← 0
2: corrupt← true
3: S ← S∗

• D − refresh : In this procedure, the distribution sampler is run and
its input is given to the PRNG to refresh its state. Also, the entropy
counter is updated and if this updated value exceed the threshold
value, corrupt is updated to false. A total number of qD calls are
made to this procedure.

• next− ror/get− next : These procedures provide the real or random
challenges (depending on the value of b and provided corrupt=false)
or the true PRNG output. Also, a premature calls to them resets the
entropy counter to 0. qR denotes the total number of calls to either
of these. It is worth mentioning here that reseting the value of c to 0,
means that we believe once the state is compromised, any premature
production of output will lead to a total loss in entropy gathered till
then.

• get − state/set − state : These procedures allow the A to learn the
current state S or set it to S∗. Also, in both of these, c is set to 0 and
corrupt to true. qS denote the total number of calls to either of these.

For the convenience, the resources of A is denoted by T = (t, qD, qR, qS)
where t is the running time of A.

Definition for Security of PRNG with Input : A PRNG generator with
input is called (T, γ∗, ε)-robust(resp. resilient, forward-secure and backward-
secure) if for any attacker A running in time t, making atmost qD calls to
D−refresh, qR calls to next−ror/get−next and qS calls to get−state/set−
state and any legitimate D inside D− refresh procedure, the advantage of
the A in game ROB(γ∗) (resp. RES(γ∗), FWD(γ∗), BWD(γ∗)) is atmost
ε, where:

• ROB(γ∗) unrestricted game where A is allowed to make all the above
calls.

• RES(γ∗) restricted game where A makes no calls to get− state/set−
state. It protects the security of the PRNG when not corrupted against
arbitrary D.

• FWD(γ∗) restricted game where A makes no calls to set− state and
a single call to get− state which is the last oracle call A is allowed to
make. It protects past outputs if the current state is compromised.
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• BWD(γ∗) restricted game where A makes no calls to get−state and a
single call to set−state which is the very first oracle call it is allowed to
make. It protects the future outputs if current state is compromised.

The Advantage of the A is defined as |2 ∗ Pr(b∗ = b)− 1|.

3.4 Simpler Notions of PRNG Security

[2] define two properties of PRNG with input which taken together implies
robustness.

1. Recovering Security

• It considers an atacker which has compromised the state to some
arbitrary value S0.

• Then after that sufficiently many calls to D−refresh were made
to make the entropy of the the PRNG above the threshold value
and corrupt flag to false. Suppose this results to some state S.

• Now, the output from PRNG (S∗, R) ← next(S) looks indistin-
guishable from random.

We say that PRNG with input has (t, qD, γ
∗, ε)-recovering security if

for any attacker A and legitimate distribution sampler D both running
in time t, the advantage of the adversary with parameters γ∗ and qD
is atmost ε.

2. Preserving Security

• The initial state of the PRNG is uncompromised and uniformly
random.

• Now this state is refreshed with arbitrary (adversarial) samples
I1, I2, ..Id. Suppose this results to some state Sd.

• Now, the output from PRNG (S∗, R)← next(Sd) looks indistin-
guishable from random.

A PRNG with input has (t, ε)-preserving security if the advantage of
the attacker A running in time t is atmost ε.

Theorem : If a PRNG with input has both (t′, qD, γ
∗, εr)-recovering secu-

rity and (t, εp)-preserving security, then it is ((t, qD, qR, qS), γ∗, qR(εr + εp))-
robust where t′ ≈ t.
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4 Secure Construction of PRNG with input

[2] also describes a construction of the PRNG with input which is secure
under the robustness defined by recovering and preserving security.
Let G : {0, 1}m → {0, 1}n+l be a (deterministic) pseudorandom generator
where m < n. This construction takes n(state length), l(output length) and
p = n(input length) as its parameters, and defines the three algorithms as
follows :

• setup() : It outputs seed = (X,X ′)← {0, 1}2n.

• S′ = refresh((X,X ′), S, I) : Given seed, S and I, it updates the state
S as S′ := S.X + I.

• (S′, R) = next((X,X ′), S) : Given seed and a state S, it first com-
pute U = first m bits of (X ′.S). Then it outputs (S′, R) = G(U).

Some keypoints in this construction :

• It wasn’t enough to just apply the first function,i.e, S′ := S.X + I
and not take U = first m bits of (X ′.S). Just taking X was not
enough. Suppose d calls for refresh were made, then new state S′ :=
S.Xd + Id−1.X

d−1 + ... + I1.X + I0. In this, the probability of two
distinct inputs to collide is d/2n which was not sufficiently universal
to make it a good extractor and hence making it almost random. So
it is important to also use an X’ so that the function over I becomes a
good randomness extractor. For further details, please refer the proof
given in section 4 of [2].

• The proof of robustness can be done in two parts, including proving
recovering security and preserving security. [2] uses a hybrid argu-
ment to prove these securities. The hardness assumption behind the
proofs is Information Theoretic. Also, the recovering security uses the
assumption that the distribution sampler D is legitimate.

• Taking the first m bits in the calculation of U was to ensure the state
pseudo-randomness of the construction which is based on construction
of [1]. If the first m bits were not truncated, then a very strong attack
is possible on the construction.

5 Linux PRNG

The linux PRNG - LINUX consists of 2 PRNGs with input /dev/random
and /dev/urandom. /dev/random is a blocking PRNG with input, while
urandom is non-blocking. What this means is that if the PRNG runs low
on entropy (as estimated by its entropy estimator), random blocks and does

8



Figure 2: Linux PRNG overview

Figure 3: State and pool changes in Linux’s PRNG

not produce further output until sufficient entropy has gathered back. On
the other hand urandom continues to produce output even if it runs low on
entropy. Also, its worth mentioning that these PRNGs are used in numerous
OS security services and cryptographic libraries.
The following parts contain a precise description of the PRNG in the model
described in the previous sections.

• LINUX contains state S = (Si, Sr, Su) and has the 3 algorithms
(setup, refresh, next). Also, |Si| = 4096 bits, |Sr| = 1024 bits and
|Su| = 1024 bits. Si is called the input pool and is where the new en-
tropy is collected. Sr and Su are the output pools used by /dev/random
and /dev/urandom respectively. When the output pools contain suf-
ficient amount of entropy, output is produced using them and if they
run low, entropy is transferred from the input pool to the output pools
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using the mixing function.

• Setup→ seed

Let seed← ε where ε is the empty string. Output seed.

• Refresh(seed, S, I)→ S′

The refresh procedure of LINUX consists of two algorithms - one is
refreshi and other is refreshc as described in algorithms 8 and 9.
refreshi is called on initializing the internal state and refreshc is
called on every other normal refresh operation. For details on what
the inputs are and how they are collected, please refer section 5.2 of
[2], and sections 2.2 and 3.1 of [4]. The important point to note is
that if the PRNG estimates internal pool having sufficient entropy,
(specifically if Ei ≥ 3584) the new input is neglected. This will later
form the basis of attacks on the PRNG. Note that M is the mixing
function used to mix new input into the pool.

Algorithm 8 Refreshi
Require: Inputs I1 and I2, S = 0
Ensure: S = (Si, Sr, Su)
1: Si ←M(I1, 0)
2: Sr ←M(I2, 0)
3: Su ← 0

Algorithm 9 Refreshc
Require: Input I, S = (Si, Sr, Su)
Ensure: S′ = (S′i, S

′
r, S
′
u)

1: if Ei ≥ 3584 then
2: S′i = Si
3: else
4: e← Ent(I)
5: S′i = M(I, Si)
6: Ei = e+ Ei

7: (S′r, S
′
u)← (Sr, Su)

• next(seed, S)→ (S′, R)

The next procedure is divided into 2 parts - one nextr - for output
from /dev/random and one nextu for output from /dev/urandom. The
nextr procedure is described in algorithm 10. Basically αr ≥ 8 means
that input pool has sufficient entropy and then using the folding and
hash functions - F,H data is transferred from the input pool to the
output pool. Since in this report, we donot require the specific use
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of nextu algorithm, we donot state it formally here. Please refer to
Algorithm 4 of [2] for details. But, basically the algorithm for nextu
is the same as for nextr, except that even if enough entropy is not
available, i.e. if αr < 8 in the algorithm of nextr, nextu produces
output from Su.

Further details and insights can be found in section 5.3 of [2] and
section 3.3 of [4].

Also, the functions F,H used in the algorithms are the folding and the
hash functions. The hash function used is the SHA-1 hash funcion.
We not elaborate on these here as these of little consequence to the
attacks explained later. Further details can be found in section 5.5 of
[2].

Algorithm 10 Nextr
Require: t, S = (Si, Sr, Su)
Ensure: R,S′ = (S′i, S

′
r, S
′
u)

1: if Er ≥ 8t then return R← F ◦H ◦M(Sr, H(Sr))

2: αr ← min(min(max(t, 8), 128), bEi/8c)
3: if αr ≥ 8 then
4: Ti ← F ◦H ◦M(Si, H(Si))
5: S′i ←M(Si, H(Si))
6: S∗r ←M(Sr, Ti)
7: Ei ← Ei − 8αr

8: Er ← Er + 8αr

9: S′r ←M(S∗r , H(S∗r ))
10: R← F ◦H ◦M(S∗r , H(S∗r ))
11: Er ← Er − 8t
12: else
13: Block until αr ≥ 8

14: S′u ← Su return R,S′

• The entropy estimator : Ent(I)→ Hi

Understanding this constitutes an important prerequisite to the attack
presented in the next sections. The important point to note is that the
algorithm considers the jiffies count only, where jiffies is some measure
of time, to predict entropy. The other parts of input are completely
ignored. This makes it susceptible to being fooled. Specifically, the
estimator will estimate highly regular inputs of high entropy to have
an entropy of 0 and vice versa. We describe this in detail later.

• The mixing function : M(S, I)→ S′

Basically, the mixing function is used by LINUX whenever it needs
to mix new input data in the pools or whenever a transfer is required
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Algorithm 11 Entropy Estimator

Require: Ii ← [num||jiffies||get cycles]
Ensure: Hi = Ent(Ii)
1: ti ← jiffies
2: δi ← ti − ti−1
3: δ2i ← δi − δi−1
4: δ3i = δ2i − δ2i−1
5: ∆i ← min(|δi|, |δ2i |, |δ3i |)
6: if ∆i < 2 then Hi ← 0
7: else
8: if ∆i > 212 then Hi ← 11
9: elseHi ← blog2(∆i)c

return Hi ← Ent(Ii)

between the input and the output pools. We donot delve into the exact
mixing function as this is not required for the attacks we elucidate in
this report, but suggest interested readers to refer sections 5.6 of [2]
and section 3.1 of [4].

6 Attacking the Linux PRNG

6.1 Distributions used in attacking the entropy estimator

LINUX uses an internal Entropy Estimator on each input that continuously
refreshes the internal state of the PRNG. This estimator can be fooled in two
ways. First, it is possible to define a distribution of zero entropy that the
estimator will estimate of high entropy, and secondly, it is possible to define
a distribution of arbitrary high entropy that the estimator will estimate of
zero entropy.
This is due to the estimator conception: as it considers the timings of the
events to estimate their entropy, regular events (but with unpredictable
data) will be estimated with zero entropy, whereas irregular events (but
with predictable data) will be estimated with high entropy. These two dis-
tributions are given in the following lemmas.

Lemma 1 There exists a stateful distribution D0 such that H∞(D0) = 0,
whose estimated entropy by LINUX is high.

Proof. On input the state i, D0 updates its state to i + 1 and outputs a
triple [W i

1,W
i
2,W

i
3] which constitutes the 12 byte input to the linux prng

and where
W 0

1 = 212,W i
1 = |bcos(i) · 220c|+W i−1

1

W i
2 = W i

3 = 0
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Here W i
1 plays the role of jiffies count in the input to the entropy estimator.

Then H∞(D0) = 0 (conditioned on the future and past outputs) but the
estimated entropy by LINUX is Hi = 11 (since ∆i > 212).

Lemma 2 There exists a stateful distribution D1 such that H∞(D1) = 64,
whose estimated entropy by LINUX is 0.

Proof. On input the state i, D1 updates its state to i + 1 and outputs a
triple [W i

1,W
i
2,W

i
3] which constitutes the 12 byte input to the linux prng

and where
W i

1 = i,W i
2 = W i

3 = U32

Then H∞(D1) = 64 (since each 12 byte input contains 8 bytes on random
data) but the estimated entropy by LINUX is Hi = 0 (since δi = 1, δ2i =
0, δ3i = 0 and so Hi = 0).

6.2 Concrete attacks already in literature

In this subsection concrete attacks on the robustness of the prng are dis-
cussed. Note that these attacks are taken from [2].

Lemma 3 /dev/random and /dev/urandom are not robust.

Attack on /dev/random
Consider an adversary aganist the robustness of the Linux PRNG in the
game ROB(γ∗). After the initialize procedure the adversary makes the
following oracle queries.

• get-state: After this call, A knows all the parameters of the prng -
i.e. he/she knows Si, Sr, Su, Ei, Er, Eu and entropy counter c = 0.

• next-ror: A makes bEi/10c + bEr/10c queries to next-ror oracle.
Each call to next-ror will produce an output from the prng and the
entropy of input pool will keep on decreasing. At the end A knows
Si, Sr ,Ei = Er = 0 and also c = 0.

• D-refresh: In a first stage, A refreshes LINUX with input from D0.
After 300 queries, Ei = 3584 and Er = 0. A knows Si and Sr and
c = 0.

In a second stage, A refreshes LINUX with input J ← U128, the uni-
form distribution. As Ei = 3584, these inputs are ignored. After 30
queries, A knows Si and Sr and Er = 0, c = 3840.

• next-ror: Supposedly if c has crossed the threshold entropy γ∗, next-
ror provides it with the challenge output from either the prng or from
the uniform distribution. But, since Er = 0, a transfer is necessary
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between Si and Sr before generating R from the prng. Since Ei = 3584,
then αr = 10, such a transfer happens. But as A knows Si and Sr,
then A knows R from the prng.

Analysis The adversary always outputs guess b = 0 (i.e. from the PRNG)
if his estimate for R matches the challenge value from next-ror and 0 other-
wise. Note that the output from next-ror is by default 80 bit string which is
from U80 if b = 1 and from next(S) if b = 0. The advantage of the adversary
in the above game is

Pr[b = b∗] =
1

2
· 1 +

1

2
· (1− 1

280
)

⇒ |Pr[b = b∗]− 1

2
| = 1

2
(1− 1

280
)

which is clearly non-negligible.
Explanation and intuition The above attack is exactly as presented in [2].
But, we believe it is wrong on some minor details. For example, the number
of queries in the step 2 of the attack should be Q = dEi/80e + dEr/80e.
Each call to next-ror will call the next procedure of the PRNG and since
the default output of the PRNG is for 80 bits, so it should take Q number of
queries to make Ei = Er = 0. The main point is that after some calculable
number of queries, the adversary can be sure that Ei = Er = 0.

Similarly, in step 3 of the attack, we believe the number of queries to D0

should be d3584/11e = 326. This is of minor consequence, as the main
thing is that after certain number of queries to D0, Ei >= 3584, Er = 0 and
LINUX begins to ignore any further inputs.

Another point to note is that the second stage of the step 3, where the PRNG
is refreshed with inputs from uniform distribution, is only to make the value
of c, the entropy counter maintained by the oracle sufficient enough to cross
γ∗. In view of this, we believe the number of queries made to D − refresh
with input from U128 should be dγ∗/128e. To mount other attacks, it can
just be borne in mind to somehow make the states and the next output
of PRNG predictable and later executing sufficient number of D − refresh
queries to make c cross the threshold. As will be evident after seeing the
other attacks, this step is almost used as a tool in every attack.

The first, second and last steps in the above attacks are common and are
used as tools. For, example, after the second step, we have Ei = Er = c = 0.
The main idea lies in the third step where the intention is to create a state
using which the next output of the PRNG becomes predictable. Here this
is being achieved by using inputs from distribution D0. LINUX estimates
these inputs to have high entropy and correspondingly raises its estimate of
Ei, but actually these have H∞(D0) = 0. So, the attacker can keep track of
the changes in the internal state of the PRNG.
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Attack on /dev/urandom

Let us consider an adversary A against the robustness of the generator
/dev/urandom in the gameROB(γ∗) that makes the following oracle queries:
one get-state that allows it to know Si, Su, Ei, Eu; bEi/10c+bEr/10c queries
to next-ror making Ei = Eu = 0; 100 D-refresh with D1; and one next-ror,
so that R will only rely on Su as no transfer is done between Si and Su
since Ei = 0. Then A is able to generate a predictable output R and to
distinguish the real and the ideal worlds.

Explanation and intuition The above attack uses the inputs from the
distribution D1, which LINUX estimates of 0 entropy. But because the
actual min entropy of inputs from D1 is 64, the distribution sampler is
legitimate in giving γi = 64. This causes the value of c to continue increasing,
while maintaining LINUX with Ei = Eu = 0. So, after sufficient number
of queries, value of c will cross the threshold γ∗ and next-ror will return
a challenge value Rb. But, A can predict this output because it knows
Ei = Eu = 0 and also the values of Si and Su.

Another Attack on /dev/random and /dev/urandom

Consider an adversary against the robustness of the Linux PRNG in the
game ROB(γ∗). After the initialize procedure the adversary makes the
following oracle queries.

• get-state: After this call, A knows all the parameters of the PRNG -
i.e. he/she knows Si, Sr, Su, Ei, Er, Eu and entropy counter c = 0.

• next-ror: A makes bEi/10c+bEr/10c queries to next-ror oracle. At
the end A knows Si, Sr, Ei = Er = 0 and also c = 0.

• D-refresh: A refreshes the PRNG with inputs from D0. After 300
queries, Ei = 3584, Er = 0. A knows Si, Sr, Ei, Er = 0 and c = 0.

• next-ror with t=1 Since Er = 0, a transfer is necessary from the
input pool to the output pool before generating the output. Since
αr = min(min(max(t, 8), 128), bEi/8c) = min(8, bEi/8c) = 8, new
value of Ei = Ei−8αr = 3584−64 = 3520 and Er = Er+8αr−8t = 56.

• next-ror with t=7 Since the output pool contains sufficient entropy,
no transfer is necessary and new Er = 0.

• Repeat the 2 previous steps until Ei = 0 and only do one next-ror
query with t=1 in the last step, so that at end Ei = 0, Er = 56.

• Refresh from U128. After dγ∗/128e queries, adversary knows Sr and
c >= γ∗.
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• next-ror with t=7: Since Er = 56, no transfer is necessary between
Si and Sr before generating R. But as A knows Sr, then A knows R.

The advantage of the adversary in the above game is

Pr[b = b∗] =
1

2
· 1 +

1

2
· (1− 1

256
)

.
With probability 0.5 either b=0 and the adversary wins with probability 1
or with probability 0.5 b=1 and adversary wins with probability 1−(1/256).
Explanation

So, basically in this setting the adversary uses sample inputs from the dis-
tribution D0 to get LINUX in a state where it estimates its input pool’s
entropy to be high, but since the data used in refresh had actual min en-
tropy 0, the final state is completely predictable. Then using cleverly 1 byte
outputs from the PRNG, the adversary forces LINUX prng to estimate the
output pool’s entropy to be 56. Since all the state is now known to the
adversary, the next output is predictable and leads to adversary winning
the security game with non-negligible probability.

6.3 New attacks on the Linux PRNG

In this subsection, we present our own insights and intuitions of the attacks
used against the Linux PRNG. We also present some new attacks on the
PRNG, which although use the same basic tools as the previous attacks, are
new in a sense that they have not been given elsewhere in literature.

• First of all, we note the attacks elucidated in the previous sections
attack the robustness of the PRNG. We believe that any attempt to
break the resiliance of the PRNG will fail from the tools used in the
above attack. This is because the attacker needs some way to access
the internal state of the PRNG to actually say something non-trivial
about the output. If he/she is just allowed to make refresh queries and
not make any get-state/set-state queries, the attacker will not be able
predict the next output, atleast given only the distributions D0 and
D1. So, we believe any attempts to break the resiliance of the PRNG
is futile with these tools.

• Next, we move onto the forward and backward security of the PRNG.
If thought carefully, the attacks presented in last sub-section seem to
break the backward security of the PRNG, in the sense that once the
attacker gets access to the state in present, he/she can predict the
outputs in a later point in time. But the point remains that the model
we defined in the previous sections, to break the backward security
of the PRNG, the attacker must make the very first oracle query to
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set-state. In the attacks presented in last sub-section, the very first
oracle query is to get-state. The model defined does not allow set-
state to get the attacker the current state, which should be possible
intuitively. If the very first oracle query to get-state is replaced with
one to set-state, we believe it leads to no change in the whole attack.
Hence, in some sense, the attacks do break the backward security of
the scheme.

• Another point we mention here in passing, is that the minor details of
the attacks seem to mismatch the exact values. We already described
this point earlier, when presenting the first of the attacks.

• The basic attacks presented can be modified and new attacks devel-
oped.

1. In the second attack presented on /dev/random, the attacker is
required to loop in next-ror with t=1 and t=7. We believe this
is unnecessary. The attacker first gets Si, Sr and executes step
2 of the attack (calling next-ror) to make Ei = Er = c = 0.
He then executes next-ror once with t=1. This makes Er = 56.
He can then increase c by refreshing input pool with data from
either uniform distribution or D1. Either way the only objective
is to make c cross the threshold value γ∗, while not caring for Ei.
The attacker then makes a query to next-ror with t=7, but since
sufficient entropy is available in the output pool (Er = 56), c
has crossed its threshold value and he knows Sr, the next output
will be generated from Sr and thus makes it predictable to the
attacker.

2. When refreshing the prng with the aim to increase the value of
c, instead of using inputs from U128, one can use inputs from D1.

3. Till now whatever we have discussed are in some sense modifica-
tion of the original attacks. In an attempt to find a completely
new attack, this is what we have thought out.

As already discussed attacking the resiliance seems futile. So, the
adversary should do a get-state/set-state as the first oracle query.
This gets him the complete control of all the parameters and
state in the prng. His aim then should be to somehow ensuring
a predictable state, make some oracle queries s.t. if the prng is
queried for the next prng output, it produces the value and since
the state was known to the adversary, he will get to know the
output. There are only 2 ways we believe this can be achieved.
Either he ensures there is enough entropy in the output pool - Sr
so that the next output is produced using only Sr or the entropy
in Sr is 0 and Si is known to him. For the latter of the two

17



it is also essential he somehow ensures that the input pool has
sufficient entropy or else the prng will block. The latter of two
approaches is what is done in the first attack presented in the last
section whereby using inputs from D0, he ensures that Er = 0
and Ei ≥ 3584 and also Sr, Si are known. The former of the two
is used by the 2nd attack presented in the last section, whereby
the adversary ensures at the end Er = 56 and does not care for
Ei.

The next step of the attack is to somehow maintaining pre-
dictability, increase the value of c held by the oracles/environment.
The attacks in [2] use a uniform distribution to achieve this, al-
though other distributions like D1 can be used. Then when the
final next-ror is called, since c has crossed the threshold value,
the procedure produces a challenge value. But since the adver-
sary has ensured predictability, he can tell apart the real and
ideal worlds with non-negligible probability.

• Based on the above discussion, we can present many new attacks, but
all of them will be some minor modification of the above generic attack
structure. So, in some sense we have not been able to find a completely
new out-of-the-box attack, but identified a generic attack structure.

• An open question still remains as to how to exploit these theoretical
attacks on the prng into actual real world practical attacks.

• All the previous analysis was done on Linux kernel version number
3.7.8 and the current stable version of Linux kernel is 4.0. Whether
there has been further changes in the prng based on Dodis et al paper
and the attacks presented is subject to source code analysis.

7 Conclusion

In this report we have tried to survey the recent literature on PRNG with
inputs. Although, our attention has been centered around linux prng, several
works similar to this have been done about other prng, specifically [5] is
about proving the intel prng secure in such a model.
All the above discussion definitely points to the non-robustness of the Linux’s
prng. But these attacks are theoretical in the sense that they assume the
attacker to get the full internal state of the prng. In practice, this means
bypassing the linux kernel’s security measures to get access to the kernel
state, which is itself daunting task.
We mention here that [2] also contains attacks based on the mixing function
used in the Linux PRNG. The attack is based on the linearity used by the
mixing function and existentially proves the existence of a distribution such
even after arbitrary number of refreshes from this distribution, the entropy
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of the internal state does not increase. We have not touched upon this attack
as our focus was based on finding new ways to exploit the entropy estimator.
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