
University of Illinois, Urbana Champaign
CS/ECE 498 Applied Cryptography

Author: Nishant Kumar
Date: December 16, 2020

PROJECT

1

Techniques in OT extension

In this report, we take a closer look at the primitive of Oblivious Transfer (OT). OT is
a central cryptographic primitive which involves two parties - a sender and a receiver. The
sender has a bunch of strings - say {s1, s2 . . . sn} and the receiver has a selection index i and
wants to retrieve the string si (see Figure 1.1 for a visual description). Without caring for
security, this problem is trivial in that either the receiver can reveal to the sender its desired
index and the sender sends the correct value to the receiver or the sender sends over all
the strings {s1, s2 . . . sn} to the receiver and it then chooses si. However, what makes this
problem highly non-trivial is that the sender wants to send over si to the receiver obliviously
- i.e. neither the sender learns the receiver’s index i, nor the receiver learns any information
other than si at the end of the protocol.

OT can be thought of as a special case of Secure-Multi Party Computation (MPC),
which is another very well studied and powerful primitive in cryptography. Roughly speak-
ing, MPC involves a bunch of distrustful parties with private inputs, who are interested in
computing some joint function f on the combined data in such a way that only the output
of the function is revealed to the parties and provably nothing else about any party’s data
is revealed to any other other party. A lot of practical privacy-oriented real-world compu-
tations can then be modelled in the framework of MPC. For example, consider training of
Machine Learning models on private data from entities. Or performing Machine-Learning-
as-a-service, where a server hosts a ML model and a client with a private input is interested
in learning the ML model prediction in such a way that neither the client learns about the
ML model (other than the prediction output), nor the server learns anything about the
client’s private data. With MPC, these problems can be solved easily.

Interestingly, OT is proven to be complete for MPC - meaning a protocol to securely
evaluate OT would imply a protocol to do MPC [12, 8]. And this serves as one of the
central motivations to study OT. Efficient protocols for OT would be useful to get practical
real-world implementations of MPC, which as mentioned is very useful for a lot of practical
privacy-oriented tasks. Other than this, theoretically speaking, its interesting in its own
right to find out what the minimal cryptographic assumptions needed for OT are and if its
implied by say One-way-functions.

In this report, we will look in detail at the efficiency aspect of OT. In particular, we
will look at OT extension - which studies how to extend OT - i.e. use a small number of
base OTs to do a large number of OTs. Impagliazzo and Rudich [9], in a seminal work

Figure 1.1: 1-out-of-2 Oblivious Transfer functionality

in 1989, showed that a black-box reduction from OT to a OWF would imply P6=NP. This
would mean that there is mostly no hope of basing OT on symmetric key primitives and
in fact 2-round OT was later shown to be equivalent to 2-round key-exchange and hence
public-key-encryption [7]. In light of this result, it might seem like there is little chance to
make OT as efficient as symmetric key primitives (since public-key encryption is typically
much slower than symmetric-key).

However, in a seminal work in 1996, Beaver [3] showed that its possible to get the next
best thing - i.e. use only a small number of base OTs to extend it and get a large number of
OTs using only OWF. However, the proposed construction made non-black-box use of the
underlying OWF and hence was impractical for real-world usage. Ishai et al. [10] proposed
another construction of OT extension in the Random Oracle Model (ROM), which only
makes use of cheap symmetric key primitives, in addition to the ROM calls. Subsequent
works extended the Ishai et al. [10] construction to more expressive forms of OT and
increased security level with better efficiency [1, 13, 11].

This IKNP style protocols have remained the state-of-the-art (efficiency-wise) in OT
extension, until very recently. In a recent series of works [5, 4, 15, 16], Ferret [16] shows how
to get cheap 1-out-of-2 correlated OT (another form of OT which implies the general one, as
we shall see in the next section) almost for free under variants of the LPN assumption. The
idea here is that with some small communication, the 2 parties first setup small correlated
seeds, which can then be “silently” expanded to long stretches of the desired correlated OT.
Even more recently, Boyle et al. [6] show how to get exponential number of such correlated
OTs from the Variable-density LPN assumption. This last work however, is at the moment
only of theoretical interest. Despite all this exciting progress, in this report, we focus our
attention on the semi-honest IKNP OT extension and explore the state-of-the-art in this
style of protocols.

Notation Until otherwise mentioned, we will use the term OT to refer to 1-out-2 OT,
i.e. where the sender inputs two ` length strings - s0, s1 and the receiver inputs a choice bit
b and learns sb. For ease of notation, we will also use OTm

` to denote m instances of this
1-out-of-2 OT on ` length strings.

1-2

Figure 1.2: Random Oblivious Transfer
(ROT)

Figure 1.3: Correlated Oblivious Transfer
(COT)

1.1 General techniques for OT

In this section, we will look at some of the general techniques which help us reduce the
problem of OTm

` to something more tractable. These ideas will help us to build upto the
idea of OT extension of [10], which we will see in the next section.

Random OT (ROT) In the most general form of OT, the sender has a certain set of
strings and the receiver has a particular selection index. Lets call this form of OT as chosen-
input OT or just OT. A simpler problem is to consider the following: the receiver inputs a
selection index, and the functionality provides the sender with some set of pseudo-random
strings and the corresponding chosen string (selected according to the receiver’s choice index)
to the receiver. Let call this form of OT as Random OT or ROT (see Figure 1.2 for a visual
description). Also, similar to our notation for OTm

` , we use ROTm
` to denote m instances

of 1-out-2 ROT on ` bit strings.
A bit more formally, the functionality of 1-out-of-2 ROT works as follows: the receiver,

R inputs a choice bit b, while the sender S has no input. The ROT functionality samples
two random strings r0 and r1 of length `, and provides to the sender the strings r0, r1, while
the receiver R gets rb.

The important observation is that with a small amount of communication, ROTm
` =⇒

OTm
` . Looking ahead, this reduction will allow us to simplify our task of doing OTm

` to
ROTm

` in the subsequent sections.
To see this, consider the simpler case of 1-bit strings and consider that S and R have

outputs of 1-out-of-2 ROT functionality - i.e. S holds bits r0, r1 and R holds b, rb. Now,
S and R are interested in performing a chosen-input OT, where S inputs two chosen bits
- (x0, x1) and R inputs the same choice bit b. With the ROT setup in place, S can just
send over (y0, y1) = (x0 ⊕ r0, x1 ⊕ r1) to R, who does yb ⊕ rb to get xb, as desired. A visual
description of this protocol is also provided in Figure 1.4.

In the above, we assumed that R uses the same choice bit b in the chosen-input OT as
the one used in ROT. The same can be done in fact if R uses a different choice bit c in
the chosen-input phase, with one extra round of message. To do this, R first sends over
k = b ⊕ c to S, who permutes r0, r1 according to the received bit k and sends back to R
the value (y0, y1) = (x0 ⊕ rk, x1 ⊕ rk̄). R computes yc ⊕ rb = xc. Security follows because
S only gets to see the masked input-bit k = b⊕ c. Figure 1.5 shows a visual description of

1-3

Figure 1.4: ROT =⇒ OT in a sin-
gle round and one message from Alice(S) to
Bob(R), when the choice bit of Bob is the
same across both.

Figure 1.5: ROT =⇒ OT in two rounds
with a masked bit from Bob to Alice and
one message from Alice(S) to Bob(R), when
the choice bit of Bob can be different across
both.

this protocol.
The above idea can be easily be extended to ` bit strings in the same manner. This idea

of having preprocessed OTs (which we call ROT) is attributed to Beaver [2].

Correlated OT (COT) In the last section, we saw that OTm
` can in fact be reduced

to ROTm
` with one extra message from S to R when R has the same choice bit in both

the phases. We will now see that in the Random Oracle Model ROTm
` can be reduced to

something even simpler.
Consider the following form of OT, where the sender inputs are somehow correlated

with one another, but are otherwise completely random. Since we are discussing about
1-out-of-2 OT, the simplest form of correlation we will talk about is where the sender’s two
messages xor upto a fixed constant - say ∆. Formally, S inputs into this OT functionality,
the correlation ∆, while R inputs the choice bit b. The functionality samples a random ` bit
string r and returns to the sender the strings (r, r⊕∆), while R gets r⊕ b∆ (see Figure 1.3
for a visual description).

We will refer to this form of OT as correlated OT or COT for short. Also, in consistency
with our notation introduced earlier, we will use COTm

` to denote m instances of 1-out-of-2
COT over ` bit strings.

ROTm
` can then be reduced further to COTm

k , where k is the computational security
parameter. This is easy to do especially given the random oracle - S and R can both just
hash their respective outputs from COTm

k using the random oracle. This also allows them
to stretch their k length outputs from the random oracle to ` length outputs of ROTm

` .

A note on the usage of Random Oracle While the above description makes use of the
random oracle, we can in fact work with something weaker, as pointed out by [10]. Roughly
speaking, what we really require is the hash function to still look random even when given
outputs on correlated inputs. This is what we will call as correlation robust hash function.
Formally, using the definition from [10], a hash function h : {0, 1}k → {0, 1} is called
correlation robust if for randomly and independently chosen strings s, t1, t2 . . . tm, the joint
distribution (h(t1 ⊕ s), h(t2 ⊕ s) . . . h(tm ⊕ s)) is pseudo-random even given t1, t2 . . . tm. We

1-4

will not explore this further in this report and leave it for future work.

1.2 The IKNP OT extension

From the last section we saw that the problem of OTm
` can be reduced to the problem of

COTm
k given the random oracle and an extra round of communication from S to R. Given

this insight, we will now see how to do COTm
k given only a small number of base OTs.

The technique we will be using is due to Ishai et al. [10] and is sometimes referred to as
the IKNP OT-extension after the authors. The idea will be to perform COTm

k using OT k
m,

i.e. k instances of length m OTs. Since typically total number of OTs to be performed
= m � k, the security parameter, we are effectively doing a large number of OTs at the
cost of a small number of OTs plus some more symmetric key and RO calls. Lets build this
up in steps.

Attempt 1 Lets first try and see what our desired COTm
k looks like. Naively, by definition

of the type of correlation we are looking for, this would mean that R inputs into the protocol
choice bits bi and at the end, S gets {(ri, ri⊕∆)}, while R gets {(bi, ri⊕ bi∆)}, |ri| = |∆| =
`,∀1 ≤ i ≤ m. And we are interested in doing this using only k instaces of length m OTs,
or for that matter any fewer than m OTs. The reader is encouraged to pause at this point
and think how to do this. But it might seem difficult/impossible at first sight, at least given
the way we are looking at this.

Attempt 2 Lets try to look at the desired correlation a bit differently. Consider that R
inputs into the protocol choice bits bi, but at the end S holds (ri ⊕ bi∆, ri ⊕ b̄i∆), while
R holds (bi, ri),∀1 ≤ i ≤ m. Notice that this is still the same ∆-correlation - i.e. the two
input strings of S xor upto ∆ and R holds the chosen string. The only difference from our
earlier attempt is that now R holds a fixed string ri compared to holding rbi in our earlier
attempt.

With this in place, we are now set to establish these correlated OTs using only OT k
m, i.e.

k instaces of length m OTs. Consider the following COTm
k protocol: S chooses a correlation

∆ ∈ {0, 1}k. Let ∆i denote the bits of ∆ - i.e. ∆ = (∆1||∆2 . . . ||∆k). R chooses k instances
of length m vectors randomly - i.e. R chooses ti ∈ {0, 1}m,∀1 ≤ i ≤ k. S and R then run
OT k

m with S acting as the receiver and R acting as the sender in the OT protocol and where
S uses ∆i as its choice bits, while R uses (ti, ti ⊕ b), as its messages. Here b is used to
denote a length m message formed by using bi, i.e. b = (b1||b2 . . . ||bm).

By the OT functionality then, S learns ti⊕∆ib as its output from the ith OT. Lets now
view these m length messages ti ⊕∆ib,∀1 ≤ i ≤ k as the columns of a m × k matrix. By
inspection, the rows of such of a matrix would then be ti ⊕ bi∆, where we are now using ti
to denote the corresponding length k row vectors of the m× k matrix formed by using ti as
the columns. S can also xor this string with ∆ to get ti ⊕ b̄i∆, with which it ends up with
the exact correlation we wanted in the first place - i.e. (ti ⊕ bi∆, ti ⊕ b̄i∆),∀1 ≤ i ≤ m. A
similar transformation done by R lets it put ti together as the m× k matrix and then take
ti to denote the corresponding row vectors, with which it ends up with (bi, ti).

Summary A visual description of the protocol appears in Figure 1.6. Lets try to sum-
marize what happened. From our previous section, we reduced the problem of doing OTm

`

to the problem of COTm
k . A naive attempt to establish this correlation doesn’t seem to

1-5

Figure 1.6: The IKNP OT extension protocol. Alice(S) chooses ∆ ∈ {0, 1}k, while
Bob(R) has input b = (b1||b2 . . . ||bm) and chooses ti ∈ {0, 1}m,∀1 ≤ i ≤ k. Alice and Bob
run k instances of the OTm protocol (i.e. OT over m length strings) where Alice acts as the
receiver and inputs ∆i as the choice bit, while Bob acts as the sender and inputs (ti, ti⊕b).
Alice as a result learns ti⊕∆ib, which when put together as a matrix and transposed leads
her to learn ti ⊕ bi∆. Finally, Alice xors this with ∆ to get (ti ⊕ bi∆, ti ⊕ b̄i∆), while Bob
after similar transposition operation learns (bi, ti),∀1 ≤ i ≤ m. With this Alice and Bob
have now accomplished COTm

k using OT k
m.

1-6

be possible with better than m OTs. But viewing this correlation differently allowed us to
see the original OT sender, S, as the new OT receiver and the original OT receiver, R, as
the new OT sender. This allowed us establish the desired COTm

k using only k instances of
longer length m OTs. Once this is done, we get COTm

k , after which S and R can locally
hash it using the random oracle to get ROTm

` . Finally, S sends one message of size 2m`
bits to R with which they now end up with the desired OTm

` .
One might ask at this stage, how and why does it help at all to do a large number of

OTs using only a smaller number of longer OTs. Looking ahead, the reason is that the
underlying functionality we have assumed OT k

m can further be reduced to OT k
k , as we shall

see in the next section. But this would mean that not only are we using a smaller number
of OTs, but they are also over smaller length strings, which is what gives us the overall
efficiency advantage (since we pay the cost of public-key operations for only this small set
of OT k

k and rest is all either PRG and RO calls).

1.3 IKNP in practice (and optimizations)

Instantiating base OTs While the previous section should clear the air for the reader
on how IKNP works in theory, we are still left with the task of instantiating the base OT k

m.
A simple observation allows us to reduce this OT k

m further to OT k
k using only a local PRG.

The idea is to perform OT k
k on seeds of a PRG of length k, which can then be locally

expanded into long vectors of length m effectively yielding ROT k
m, which can further be

used to do OT k
m with only one message from the sender to the receiver. The base OT k

k can
be instantiated with an actual public-key OT, for example, using the protocol due to Naor
and Pinkas [14].

To put things together, suppose we are given OT k
k , which can be instantiated with Naor

and Pinkas’ protocol for OT. In the IKNP protocol discussed previously, R chooses 2 seeds
of a previously agreed upon PRG, G - say (ki0, ki1),∀1 ≤ i ≤ k. S and R call the OT k

k

functionality, with S acting as the OT receiver with choice bits ∆i, and R acting as the
OT sender with sender strings - (ki0, ki1),∀1 ≤ i ≤ k. With this, S learns ki∆i

. S and
R now expand these PRG seeds to a length m vector, so that R holds (G(ki0), G(ki1)),
while S holds (∆i, G(ki∆i

)). Notice that what we effectively have is ROT k
m. Furthermore,

in the IKNP protocol, in the first step, when S and R need to do perform OT k
m, they can

do this easily with one message from R to S (using the OT k
m to ROT k

m reduction discussed
previously).

Reducing communication for Correlated OT Suppose we are interested in perform-
ing COTm

` . One way to do this is for the sender, S to prepare both of its messages on its
own, i.e. by choosing m messages, ri0 of length ` bits each uniformly at random and then
setting ri1 = ri0 ⊕ ∆. S and R then run OTm

` using the IKNP OT extension discussed
previously. But intuitively, COT has an extra degree of freedom in choosing one of its
messages pseudo-randomly and we claim that with this observation we can do better than
doing OTm

` naively with the IKNP OT extension.
Recall that in the final step of the IKNP protocol, to convert ROTm

` to OTm
` , S needed

to send R 2 messages per OT of length ` bits each, i.e. 2m` bits. Since what we care about
is COT, where one of the sender’s messages can be chosen pseudo-randomly, and the other
message is set according to the correlation, with a clever observation, we can reduce this
communication to m` bits. This observation is attributed to [1].

1-7

Figure 1.7: ROT =⇒ COT with a single message from Alice(S) to Bob(R) when the choice
bit of the receiver remains same. This optimization allows to reduce the communication of
COT and also the preprocessing OT step in the IKNP OT extension.

In particular, consider the conversion from ROT to chosen-input OT discussed earlier.
S ad R are given a ROT correlation over 1 bit, i.e. S holds (r0, r1), while R holds (b, rb).
As discussed previously, in the chosen-input OT, if S has inputs (x0, x1), while R has input
the same choice bit b, then S can send over (y0, y1) = (x0 ⊕ r0, x1 ⊕ r1) and R performs
yb ⊕ rb = xb ⊕ rb ⊕ rb = xb.

If instead of doing this chosen-input OT, S has input the correlation ∆, and R has input
the same choice bit b, they can perform the following protocol: S sends over r0 ⊕ r1 ⊕ ∆
and outputs (m0,m1) = (r0, r0 ⊕∆). R on receiving y = r0 ⊕ r1 ⊕∆ outputs rb = r0 = m0

if b = 0, else outputs rb ⊕ y = r1 ⊕ r0 ⊕ r1 ⊕∆ = r0 ⊕∆ = m1.
And observe that we only communicated a single bit from S to R, while in the previous

chosen-input case, we communicated 2 bits from S to R. This protocol is also shown
figuratively in Figure 1.7.

Lets try to intuitively understand what is happening. S and R held one instance of
ROT correlation - i.e. S held (r0, r1), while R held (b, rb). Now, in the COT phase, S has
input correlation ∆, while R has input the same choice bit b. If we take it that the messages
output by S at the end are (m0,m1) = (r0, r0 ⊕ ∆), then if b = 0, R needs to output r0,
but note that it already holds rb = r0. In case b = 1, R needs to output r0⊕∆ and it holds
r1. S can send over then y = r0⊕ r1⊕∆, which allows R to unmask r1 and recover r0⊕∆.
Also, note that in case b = 0, in sending over r0 ⊕ r1 ⊕ ∆, R doesn’t know r1 and hence
doesn’t get any more information from the incoming message (since r1 essentially works as
as masking factor).

An important point to note is that the above conversion from ROT to COT with lesser
communication is possible when the choice bit of the receiver is same across both the in-
stances. Also, the same technique can be extended to work with ` bit messages, which is
why the commnication from S to R in the second step of IKNP is halved when dealing with
COT rather than chosen-input OT.

1-8

Putting it all together Recall from the first step of the IKNP protocol, we needed to
do an OT with S acting as the receiver with choice bit ∆i, while R acted as the sender with
input messages (ti, ti ⊕ b), where ti is chosen randomly ∀1 ≤ i ≤ k. But note that this is
in fact a COT that is happening! And which means we can use our observation from the
previous paragraph to cut down the communication of this step from R to S by half.

This sums up all the optimizations that are used in practice to implement the IKNP
protocol, to the best of the report’s author’s knowledge.

Efficiency Ignoring the cost of the base OT protocol, the cost of the first message from
R to S is mk (after applying the last optimization this first step is in fact a COT rather
than OT, as discussed previously and which is why the cost is mk and not 2mk). Assuming
only a chosen-input OT, the second step involves a communication of 2m` bits from S to
R, making the total communication to be of m(k + 2`) (for OTm

`). In addition, if what
we are interested in is COTm

` , then the cost is m(k + `), while if are interested in ROTm
` ,

then the cost is mk. Note that other than communication, the other major cost is that of
computation, which mainly involes two parts - the transposition operation done by S and
R and the RO calls made by them. The former has been optimized down to cache-level in
[1], while the latter is optimized by making use of fixed-key AES calls. We leave details of
both of these for future reports.

1.4 Conclusion

We thus have seen the classic IKNP style OT extension protocols. This comes in multiple
flavous and we saw how the cost of OTm

` is m(k + 2`), while that of COTm
` and ROTm

`

are m(k + `) and m` respectively (ignoring the cost of the base OT protocol). Though the
1-out-of-2 semi-honest IKNP protocol we saw is no longer the state-of-art (superseeded by
the silent OT line of work, in particular, by Ferret [16]), the lessons learnt from this class
of protocols are important and useful to learn.

References

[1] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 535–548, 2013.

[2] D. Beaver. Precomputing oblivious transfer. In Annual International Cryptology Con-
ference, pages 97–109. Springer, 1995.

[3] D. Beaver. Correlated pseudorandomness and the complexity of private computations.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 479–488, 1996.

[4] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient
two-round ot extension and silent non-interactive secure computation. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 291–308, 2019.

1-9

[5] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudo-
random correlation generators: Silent ot extension and more. In Annual International
Cryptology Conference, pages 489–518. Springer, 2019.

[6] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudoran-
dom functions from variable-density lpn. Cryptology ePrint Archive, Report 2020/1417,
2020. https://eprint.iacr.org/2020/1417.

[7] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship
between public key encryption and oblivious transfer. In Proceedings 41st Annual
Symposium on Foundations of Computer Science, pages 325–335. IEEE, 2000.

[8] O. Goldrcich and R. Vainish. How to solve any protocol problem-an efficiency improve-
ment. In Conference on the Theory and Application of Cryptographic Techniques, pages
73–86. Springer, 1987.

[9] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way per-
mutations. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 44–61, 1989.

[10] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
In Annual International Cryptology Conference, pages 145–161. Springer, 2003.

[11] M. Keller, E. Orsini, and P. Scholl. Actively secure ot extension with optimal overhead.
In Annual Cryptology Conference, pages 724–741. Springer, 2015.

[12] J. Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31, 1988.

[13] V. Kolesnikov and R. Kumaresan. Improved ot extension for transferring short secrets.
In Annual Cryptology Conference, pages 54–70. Springer, 2013.

[14] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, volume 1,
pages 448–457, 2001.

[15] P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-ole:
Improved constructions and implementation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1055–1072, 2019.

[16] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for correlated
ot with small communication. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1607–1626, 2020.

1-10

https://eprint.iacr.org/2020/1417

	General techniques for OT
	The IKNP OT extension
	IKNP in practice (and optimizations)
	Conclusion

