
Statistical Analysis on Large Encrypted
Datasets

A thesis submitted in partial fulfillment
of the requirements for the degree of

BACHELOR OF TECHNOLOGY

in

Computer Science & Engineering

by

Nishant Kumar
Entry No. 2012CS10239

K. Trivikrama Reddy
Entry No. 2012CS10229

Under the guidance of

Dr. Shweta Agrawal

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi.

May 2016.

Certificate

This is to certify that the thesis titled Statistical Analysis on Large Encrypted

Datasets being submitted by Nishant Kumar and K. Trivikrama Reddy for the

award of Bachelor of Technology in Computer Science & Engineering is a record

of bona fide work carried out by them under my guidance and supervision at the

Department of Computer Science & Engineering. The work presented in this

thesis has not been submitted elsewhere either in part or full, for the award of any other

degree or diploma.

Dr. Shweta Agrawal

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Abstract

The problem of performing statistical analysis on massive encrypted databases has

received much attention in the recent years. Formally, consider a data ownerD who wishes

to outsource massive sensitive data to an untrusted server E and multiple clients who

wish to compute certain functions on the encrypted database. Existing approaches given

by cryptography fall short in either efficiency or functionality – functional encryption

(FE) and homomorphic encryption (HE) schemes support general functionalities but take

time polynomial in the size of the dataset, multi-client searchable symmetric encryption

(MC-SSE) and structured encryption schemes are efficient but do not support desired

functionality.

In this work, domain specific knowledge is used to identify functionalities that are

relevant to statistical analysis and also design protocols that support computation of these

functionalities in time that is sublinear in the database size. To achieve this, techniques

from MC-SSE as well as HE/FE are unified and extended to provide schemes that are

efficient, compute meaningful (restricted) functionalities and achieve simulation based

security with quantified leakage to adversarial server and clients, which is confined to

well defined forms of data access and query patterns, as in the case of MC-SSE.

Two main protocols are provided: the first to compute basic statistical functions such

as mean and variance of data records that satisfy some filtering criteria specified by a

Boolean predicate, including range queries, and the second to compute arbitrary functions

on data records that match some keyword. These constructions provide the first efficient

multi-client “search and compute” schemes on massive datasets.

Acknowledgments

We would like to express our sincere gratitude to Dr. Shweta Agrawal for giving us this

opportunity to work with her. It has been a wonderful experience working under her and

has given us a strong flavor of research in this area. Our project has been filled with ups

and downs and we are highly grateful to her to not lose faith in us even in the worst of

times. Her sheer ability to simplify complex statements and protocols and look at things

the way we never even thought, astounded us at times. She was always prompt to give us

time to meet whenever we needed it. We feel thankful for the constant motivation, push

and especially the amount of time she provided us in the last one month of the project

which enabled us to finish this project in time and bring it in the shape it is today.

Finally, we would like to thank our family and friends, who helped us endure through

worst circumstances and emotinal distress and provided us support whenever we needed

it.

Nishant Kumar

K. Trivikrama Reddy

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Existing Approaches . 2

1.3 Our Approach . 3

2 Preliminaries 4

2.1 Definitions . 4

2.1.1 Correctness . 5

2.1.2 Security . 6

2.2 Building Blocks . 7

3 Multi-Client Searchable Symmetric Encryption 10

4 Computing Filtered Average 12

4.1 Protocol . 12

4.1.1 Correctness . 13

4.1.2 Security against adversarial server 14

4.1.3 Security against malicious clients 18

4.2 Support for Range Queries . 19

4.3 Support for Variance and other functions 21

5 Computing General Functions 22

5.1 Protocol . 22

5.2 Correctness and Security . 23

5.3 Discussion . 25

6 Related Work 26

c⃝ 2016, Indian Institute of Technology Delhi

Bibliography 27

A Protocol supporting Range Queries 31

B Proof of theorem 6: Security against adversarial clients 33

Chapter 1

Introduction

1.1 Motivation

Suppose the government of some country wishes to provide controlled access to census

data to enable social scientists and market researchers to perform statistical analyses using

restricted computations that respect users’ privacy. Most governments already do publish

census data in some sanitized form for the public domain as well as provide restricted

access data to qualified researchers for approved projects [19, 20, 18, 46]. Indeed the

government itself must perform some analysis on census data, and may wish to outsource

the storage of and computation on this massive dataset to some untrusted server.

The ability to enable controlled computation on large encrypted databases can offer a

solution in many practical scenarios. Take for example the case of Ipsos Mori, a British

marketing research firm, which was recently in the news for offering data of 27 million

mobile phones to the police [27]. The organization defended itself by insisting they

only released “safe” aggregate data that involved 50 or more customers, which their

users purportedly acquiesced to [41, 34]. However, the deal was shelved under public

pressure. Another example is provided by a raging controversy regarding the “Aadhaar”

project in present-day India [1]. The Aadhaar project is the world’s largest national

identification number project, launched by government of India, which seeks to collect

biometric and demographic data of residents and store these in a centralised database

[43]. To date, 1009 million users have enrolled in the system, and the government has

spent at least 840 million USD on the project [43]. However, the project is encountering

serious difficulties due to privacy concerns and risks being shelved [1, 39]. At least part

of these concerns could be addressed by enabling controlled computation over a massive

encrypted database.

c⃝ 2016, Indian Institute of Technology Delhi

1.2 Existing Approaches 2

1.2 Existing Approaches

There has been significant research effort in the cryptographic community over the last

decade to provide solutions for secure cloud computing, which generalises the above

examples. The above scenario is modeled by considering a data owner who owns large

scale sensitive data, an untrusted server who must store and compute over this data,

and possibly multiple clients who must be provided keys that let them learn outputs of

restricted computations.

A variety of cryptographic solutions have been constructed for this problem, offering

various tradeoffs in security, efficiency and generality. On the theoretical side, the above

scenario appears like a poster person application for the primitive of functional encryption

(FE) [38, 37], which enables a central authority (possibly the data owner) to provide

keys corresponding to functions from some family to malicious clients. Given a key SKf

corresponding to function f and a ciphertext CTx corresponding to data x, a client

may run the decryption procedure to learn exactly f(x) and nothing else. However,

the primitive of FE was designed for arbitrary computations on arbitrary data, and to

compute any function on a dataset, even a “basic” function as keyword search, requires

time polynomial in the size of the entire dataset [3]. FE does not use any knowledge about

the application, and does not permit any leakage to the adversary, favoring generality

and security unilaterally over efficiency. This negates applicability of FE to big data

applications, as noted by a recent survey [23].

A different approach to this problem is offered by the multi-client extension of searchable

symmetric encryption (MC-SSE) [26], where untrusted clients may be provided keys

corresponding to Boolean queries on keywords. These keys let them interact with the

server to learn the matching documents in time proportional to the result set. Security is

established against an honest but curious server and malicious clients who do not collude

with the server [26], additionally, some quantified leakage such as access patterns and

query correlations is permitted. These solutions are far more suitable for computing on

large encrypted datasets, for the restricted but important search functionality, offering a

solution that favors efficiency over generality and security. However these schemes do not

achieve the funcitonality we desire. See chapter 6 for more details about related work.

c⃝ 2016, Indian Institute of Technology Delhi

1.3 Our Approach 3

1.3 Our Approach

The starting point of our work is the observation that in many cases, relevant

computations in big data applications are concerned with only a small fraction of the

entire dataset. In our motivating example of census data, typical computations are of the

following form: “What is the average income of college graduates who are of gender A and

age in range [B, C] in city D?” [19, 20, 18]. In the context of a genome database, medical

practitioners typically desire to analyze connections between DNA and disease, say the

connection between the MRE11A gene and breast cancer. The data relevant to these

computations (e.g. the number of women with breast cancer) is only a small fraction

of the entire database, and additionally, in these and many other examples, relevance of

data to a particular computation is dictated by some filtering criteria.

In this work, we design multi-client search and compute schemes (MC-SCE) for computing

functions on data that satisfies some filtering critera. We combine and extend techniques

from searchable encryption, functional encryption and homomorphic encryption to

achieve a new tradeoff between generality, efficiency and security. Our proposed

constructions are efficient in that computation depends on the size of the relevant data

rather than the entire dataset. Our first construction supports queries of the following

form: “compute the aggregate A of field X of users that match filtering criteria Y ” .

The filtering criteria is expressed as a boolean predicate on a keyword space, which may

include range specifications, and the aggregate A represents basic statistical functions

such as mean, standard deviation, correlations and such others. Our second construction

supports computation of arbitrary functions (represented as circuits) over records that

match some keyword X. For more details, see Sections 4 and 5.

c⃝ 2016, Indian Institute of Technology Delhi

Chapter 2

Preliminaries

2.1 Definitions

In this section we describe our model formally. Our model extends that of multi-client

searchable symmetric encryption [26] to the search and compute setting.

Let λ be the security parameter. A database DB = {indi,Wi}di=1 is a collection of

d documents, each consisting of a document identifier indi ∈ {0, 1}λ, a set of keywords

Wi ⊆ {0, 1}∗ associated with that document, and a set of attributes on which computation

may be performed, denoted by CompAttr = {attr1, . . . , attrk}. Here, for j ∈ [k], let attrj ∈
{0, 1}λ. We assume for simplicity that all documents have the same set of computable

attributes {attrj}j∈[k] 1. We denote the value of a given attribute attrj in a document

indi as indi[attrj] or simply indi[j], and assume that all attribute values have the same

support Dom. Let W = ∪d
i=1Wi and m = |W|. Let F = {fi : Domℓi → Rng}i∈N be a set

of functions, where ℓi may be arbitrary (i.e. fi has unbounded arity ℓi).

A query is a tuple Q = (ϕ(w̄), attr, f) where ϕ(·) is a boolean formula on a tuple of

keywords w̄, attr ∈ CompAttr is a computable attribute in the document and f ∈ F is a

function. We denote by DB(ϕ(w̄)) the set of identitifiers {indi} such that the formula ϕ(w̄)

evaluates to true if we replace each word wj ∈ w̄ with true or false depending on whether

wj ∈ Wi or not. Intuitively, DB(ϕ(w̄)) is the set of documents that satisfy the Boolean

constraint ϕ(w̄). Let S =
{
indi[attr] : indi ∈ DB(ϕ(w̄))

}
be the multiset of values of

the queried attribute attr in the matching documents DB(ϕ(w̄)). We define the result of

the query Q on the database DB as DB(Q) = DB((ϕ(w̄), attr, f)) = f(s1, . . . , s|DB(ϕ(w̄))|),

where si ∈ S.

Next, we define our notion of multi-client search and compute encryption.

Definition 1. A Multi-client Search-Compute Encryption (MC-SCE) scheme for a

functionality F is a tuple Π = (EDBSetup,GenToken,SCompute) where EDBSetup is a

1This restriction is easily removable with some additional notation. We choose to impose it since it
is a reasonable assumption for relational databases, which is the main setting we are interested in.

c⃝ 2016, Indian Institute of Technology Delhi

2.1 Definitions 5

P.P.T. algorithm run by a data owner D, GenToken is a protocol between the data owner

D and a client C and SCompute is a protocol between a client C and a server E with the

following syntax:

• EDBSetup(DB,F) : The EDBSetup algorithm takes as input a database and a

functionality F and outputs an encrypted database EDB and a master key MSK.

• GenToken: This is a 2 party protocol between a client C and data owner D, where
the data owner has input MSK and no output, whereas the client has input a query

Q and output a token SKQ. We will write SKQ ← GenToken(Q,MSK) to denote the

output of the client upon completion of the protocol. For notational convenience, we

omit mention of C and D from the arguments of GenToken where these are implicit

from context.

• SCompute : This is a 2 party protocol between a client C and a server E where the

client C has input a token SKQ and output a value Res ∈ Rng∪⊥, and the server E
has input EDB and no output. We will write Res←SCompute(EDB, SKQ) to denote

the output of the client upon completion of the protocol SCompute. For notational

convenience, we omit mention of C and E from the arguments of SCompute where

these are implicit from context.

2.1.1 Correctness

An MC-SCE scheme Π = (EDBSetup,GenToken,SCompute) for functionality F is said to

be computationally correct if for all efficient adversaries A, the following game outputs 1

with all but negligible probability.

• A(1λ) outputs DB and queries Q1, . . . , Qk.

• Let (EDB,MSK)← EDBSetup(DB,F).

• For i ∈ [k], let SKi ← GenToken(Qi,MSK).

• For i ∈ [k], let Resi ←SCompute(EDB, SKi).

• Output 1 if for all i ∈ [k], it holds that Resi = DB(Qi).

c⃝ 2016, Indian Institute of Technology Delhi

2.1 Definitions 6

2.1.2 Security

Security is formulated using a simulation style definition and is parametrised with a

function L, which represents the amount of information leaked to the adversary. In our

model, the server is assumed to be honest-but-curious and the client is assumed to be

malicious. We define the corresponding security games below.

Security against adversarial server We define the security game against an honest

but curious server as follows.

Definition 2. Let Π = (EDBSetup,GenToken,SCompute) be an MC-SCE scheme for

functionality F . Given a stateful algorithm L and algorithms (A, Sim), define experiments

RealΠA(λ) and IdealΠA,Sim(λ) as follows:

RealΠA(λ): A(1λ) chooses DB. We let (EDB,MSK) ← EDBSetup(DB,F) and let A

get EDB. A repeatedly chooses queries, say Qi. For each such query Qi, let SKi ←
GenToken(Qi,MSK) and tri be the transcript of the protocol execution SCompute(SKi,EDB).

The transcript tri of SCompute protocol is provided to A. Finally, A outputs a bit, which

is used as the output of the game.

IdealΠA,Sim(λ): A(1λ) chooses DB. Let EDB ← Sim(L(DB)) and let A get EDB. A

repeatedly chooses queries, say Qi. For each such query, let tri ← Sim(L(DB, Q1, . . . , Qi))

and give the output tri to A. Finally, A outputs a bit, which is used as the output of the

game.

Π is said to be L-secure against adversarial server with adaptive attacks if there

exists an efficient S for all efficient adversaries A s.t.

|Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S(λ) = 1]| = negl(λ)

Security against adversarial clients Security against adversarial clients captures

the fact that even if multiple clients collude together, they should not be able to compute

a function which none of them were authorized for. The following definition adapts the

one given in [26] to fit our model.

Definition 3. Let Π = (EDBSetup,GenToken, SCompute) be a MC-SCE scheme for func-

tionality F . Given algorithms (A, Sim), define 2 experiments RealΠA(1
λ) and IdealΠA,Sim(1

λ)

as follows:

c⃝ 2016, Indian Institute of Technology Delhi

2.2 Building Blocks 7

RealΠA(1
λ): A(1λ) chooses DB. Let (EDB,MSK)← EDBSetup(DB). A adaptively invokes

the GenToken protocol with the data owner D, requesting queries {Qi}i∈[k] to obtain SKi ←
GenToken(Qi) and then invokes the SCompute protocol with the server E to obtain Resi ←
SCompute(SKi,EDB). Note that A can behave arbitrarily in these interactions. Finally

A outputs a bit b, which is set as the output of the game.

IdealΠA,Sim(1
λ): A(1λ) chooses DB. The experiment initializes (Sim0, Sim1, Sim2)← Sim by

running st← Sim0(1
λ). Subsequently A can invoke instances of the protocol GenToken(Qi),

in which case it interacts with Sim1(st) and of the protocol SCompute, in which case it

interacts with Sim2(st). Sim1(st) and Sim2(st) can update the global state st of Sim. They

can also issue queries Q to an oracle - OL which returns (DB(Q),L(DB, Q)), where DB(Q)

is the answer to the query and L(DB, Q) is the leakage for that particular query. Finally,

at some point, A outputs a bit b, which is set as the output of the game.

Π is said to be L-semantically secure against adversarial clients if there exists

an efficient simulator Sim s.t. for every efficient adversary A,

|Pr[RealΠA(1λ) = 1]− Pr[IdealΠA,Sim(1
λ)]| = negl(λ)

A non-adaptive version of these definitions is a straightforward modification of the above

games where the adversary provides all of the queries at the start of the game.

2.2 Building Blocks

In this section we define the building blocks required for our constructions.

Data Structures To begin, we define the data structures used by the OXT protocol

[8] and its multi-client extension [26]. The OXT protocol uses two main data structures

– TSet and XSet. For each keyword w ∈ W, TSet(w) is an inverted index which points

to the ind values of all the documents in the database that contain keyword w. Each

TSet(w) is associated with a unique identifier stag, which is used to retrieve TSet(w). We

define TSet = {TSet(w)}w∈W.

The TSet data structure is abstracted by the following API: the TSetSetup operation

receives a collection T of lists T(w) for each w ∈ W, builds a TSet data structure out of

these lists and returns TSet and a key KT . The TSetGetTag function is a deterministic

c⃝ 2016, Indian Institute of Technology Delhi

2.2 Building Blocks 8

function that takes as input the key KT and a keyword w and returns stag(w), while the

TSetRetrieve operation takes as input TSet and stag(w) and returns the corresponding

list T(w). Correctness requires that TSetRetrieve
(
TSet,TSetGetTag(KT , w)

)
return T(w)

with all but negligible probability while security posits that the TSet data structure does

not reveal anything other than some quantified leakage.

Throughout our paper, we assume TSet to be instantiated with the specific implemen-

tation - Σ from [8]. We note that this only eases the way the leakage is presented

in later parts of our proof and is not necessarily required for our protocol. The

corresponding leakage incurred by Σ is just
∑

w |T[w]|, which for our case will turn out

to be N =
∑

w |DB(w)|.

The data structure XSet stores encrypted version of the set X = {f(w, ind) : w ∈
W, ind ∈ DB(w)}, namely all the keyword, document-index pairs such that the document

contains the keyword. Thus, checking whether a keyword occurs in a given document

can now by rephrased as checking containment of f(w, ind) ∈ X, which is accomplished

efficiently and securely using XSet.

Yao’s Garbled Circuits Our protocol for computing general functions on filtered data

makes use of Yao’s garbled circuits. Yao’s garbled circuits have been studied extensively

from both the theoretical [44, 2] and practical [31, 24] perspectives, and a series of recent

works have optimized its performance [29, 28, 30, 45, 16, 25].

Adversary Model We prove security against an honest but curious server and

malicious clients. The server can be strengthened to malicious using techniques in [14]

but we do not explore this in the present work. We crucially assume that the server and

clients do not collude with each other. We note that this assumption is standard in the

setting of SSE [8, 26].

Homomorphic Encryption Our protocols make use of homomorphic schemes sup-

porting simple operations. We make use of additive homomorphic schemes [15] for

computing the mean, and schemes for computing 2-DNF formulae [5] for computing

second order statistics such as variance, correlation and such others.

c⃝ 2016, Indian Institute of Technology Delhi

2.2 Building Blocks 9

DDH Assumption Let G = Gτ be a prime order cyclic group of order p = p(τ),

generated by g. We say that the decision Diffie-Hellman (DDH) assumption holds in G

if AdvDDH
G,A (τ) is negligible for all efficient adversaries A, where

AdvDDH
G,A (τ) = |Pr

(
A(g, ga, gb, gab) = 1

)
− Pr

(
A(g, ga, gb, gc) = 1

)
|

where probability is over the randomness of A, and uniformly chosen a, b, c ∈ Z∗
p.

c⃝ 2016, Indian Institute of Technology Delhi

Chapter 3

Multi-Client Searchable Symmetric

Encryption

Our first construction builds upon the multi-client SSE scheme of Jarecki et al. [26],

which we recap here. In multi-client SSE, we have a data owner D who processes a large

database DB to produce an encrypted database EDB and a master key MSK, of which it

sends EDB to the server E . The model allows for multiple clients Ci, who may requestD for

keys corresponding to certain queries Qj, which D constructs using its MSK. It provides

the client with a key corresponding to Qj, along with a signature so that E may verify

that C is authorized to make this query. The client transforms the received key, say SKj,

into search tokens required by the OXT protocol [8]. By choosing a (singly) homomorphic

signature in the previous step, the client may also transform the received signature on

the key into one for the tokens. It sends the tokens and corresponding signatures to

the server, who verifies the signature, and executes the OXT search protocol. It obtains

encrypted ind values, which it returns to the client, who is in possession of the decryption

key.

Next, we provide a (simplified) overview of the protocol, which builds on OXT. The

protocol is designed to support arbitrary Boolean queries but for ease of exposition

here, we will consider the special case where the client makes conjunctive queries of

the form w1 ∧ w2 ∧ . . . ∧ wn. The least fequent word, w1 (say) is known as s-word, while

the remaining words w2, . . . , wn are called x-words. It is assumed that the data owner

maintains information that lets it compute the s-word for any query of a client.

The setup phase of the MC-SSE protocol, as in OXT, constructs the TSet and XSet

as follows. First, it picks PRFs Fτ and Fp with the appropriate ranges, and their

keys KS and {KX , KI} respectively. Intuitively, the keys KS and KX are used to

generate pseudorandom handles of keywords w ∈ W, denoted by strap = Fτ (KS, w) and

xtrap = gFp(KX ,w) respectively. The key KI is used to generate a pseudorandom handle of

document indices ind ∈ DB as xind = Fp(KI , ind). KT is a key used to compute stag values

as required by the TSet implementation. Next, the protocol computes xtag = gFp(KX ,w)·xind

c⃝ 2016, Indian Institute of Technology Delhi

11

for all “valid” (w, ind) pairs, that is pairs such that the document ind contains the keyword

w, and adds xtag to XSet.

To populate TSet(w) for w ∈ W so as to enable efficient response to queries such as

w1∧w2∧. . .∧wn, the protocol does the following. If wi has Twi
matching documents, then

TSet(wi) contains Twi
entries, each containing the relevant document index (encrypted)

as well as “blinded” xind values to enable the server to check whether the remaining

keywords also match the given document. More formally, for each list TSet(w) for w ∈ W,

the data owner generates a fresh pair of keys (Kz, Ke) using strap(w) and encrypts the Tw

document indexes as e = Enc(Ke, ind). Next, for c ∈ [Tw], it computes a blinding of the

Tw index representatives xind1, . . . , xindTw as follows: set zc = Fp(Kz, c) and y = xind·zc−1.

Store (e, y) in TSet(w). Note that (e, y) are constructed using keys that are specific to

s-word w. It chooses a key KM for AuthEnc - an authenticated encryption scheme, and

this key is shared with the server. The keys (KS, KX , KI , KT , KM) are retained by D as

the master secret.

When the client requests a key for the query w1∧w2∧. . .∧wn, the data owner computes the

s-word, computes stag usingKT , strap usingKS as well as xtrap2, . . . , xtrapn corresponding

to w2, . . . , wn using KX . Next, it blinds the xtrap values as bxtrapi = gFp(KX ,wi)·ρi where

ρi are chosen randomly from Z∗
p. Then it creates an authenticated encryption env ←

AuthEnc(KM , (stag, ρ2, . . . , ρn)) and returns SK = (env, strap, bxtrap2, . . . , bxtokenn) to the

client.

The client uses SK to construct search tokens as follows. Use strap to compute Kz and

for c ∈ [Tw], compute zc = Fp(Kz, c). Now, it sets bxtoken[c, i] = bxtrapzci and sends env

along with all the bxtoken[c, i] to the server. The server verifies the authenticity of env

using KM , and decrypts it to find stag and ρ2, . . . , ρn. It uses stag to obtain TSet(w1) and

for i ∈ {2, . . . , n}, it checks if bxtoken[c, i]y/ρi ∈ XSet. If so, it retrieves the corresponding

encrypted document index e and sends it to the client.

c⃝ 2016, Indian Institute of Technology Delhi

Chapter 4

Computing Filtered Average

4.1 Protocol

In this section, we describe a multi-client search and compute scheme, denoted by FltAvg,

for the functionality of filtered average defined below. Recall that a client makes a query

of the form Q = (ϕ(w̄), attr, f) where ϕ(·) is a boolean formula on a tuple of keywords w̄
1, attr ∈ CompAttr is a computable attribute in the document and f is a function. Let S

be the set of attribute values obtained from the documents matching the search, namely

S =
{
indi[attr] : indi ∈ DB(ϕ(w̄))

}
. We denote the elements of S as si for i ∈ |S|. Then

filtered average is defined as f(S) = 1
|S|

∑
i∈|S|

si.

Our construction begins with the MC-SSE protocol of Jarecki et al. and augments it with

a symmetric key additively homomorphic encryption scheme AHE to enable computation

of the average of some computable attribute attrj for j ∈ [k]. For w ∈ W, the setup

algorithm now precomputes the sum of all the values indc[attrj] for c ∈ [Tw] and j ∈ [k],

and encrypts this sum using AHE under a key Kh which is derived from strap. This tuple

of encrypted sums - sct1, . . . , sctk
2 are added to the head of the list. For c ∈ [Tw], i.e. each

tuple in the list, the blinded xind value y is computed exactly as before, and additionally,

AHE encryptions of −indc[attrj] are computed under a fresh key Kj
h = Fτ (Kh, j). The

protocol computes documents matching the filtering criteria w̄ as before by iterating over

the list and checking if each document matches the remaining keywords. However now,

if a given document does not match one of the x-words, then we add the corresponding

encryption of −indc[attrj] to the encryption of
∑

c∈[Tw]

indc[attrj] so that the value of the

attribute in the non-matching document is subtracted from the sum. The final encryption

is returned to C who is in possession of the decryption key Kh and can recover the value.

However, while this modification achieves the functionality we are after, it also introduces

vulnerabilities. Note that in the MC-SSE protocol, if a malicious client produces certain

1For simplicity, we defer handling of range queries to later part
2Along with an extra element 0 to make the size of all tuples equal, as required by the TSet

implementation of [8].

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 13

corrupt values for bxtoken[c, i], for example by not computing zc honestly, then this does

not offer it any advantage. To see this, say that some token bxtoken∗ is generated

maliciously. Then, the corresponding test (bxtoken∗)y/ρi ∈ XSet returns false, and the

client does not receive the encrypted index corresponding to that particular document.

Since maliciously generated tokens produce a result that is a subset of the honest result,

the protocol need not safeguard against such attacks. However, in the case of the

filtered average functionality, this is no longer true. If the client produces a certain

token maliciously, then the XSet test will fail, even when actually it shouldn’t, and the

corresponding attribute value will get subtracted from the sum. By mixing and matching

honest and corrupt tokens, the client can learn individual attribute values for documents,

which is leakage far in excess of functionality. For instance, by using honest tokens

bxtoken1, . . . , bxtokenTw , the client learns some value, say val. Now, if bxtoken
y/ρ
1 results

in an XSet hit, then by executing a query with tokens bxtoken∗1, bxtoken2 . . . , bxtokenTw

where bxtoken∗1 is corrupt, the client may learn the exact value of the attribute in the first

document in the list.

A natural solution is to force the client to provide a proof that he performed the

computation correctly. However, despite substantial improvements in the efficiency of

proofs (see [22] and references therein), computing a proof may be too expensive for a

resource constrained client. A different way to handle this issue relies on the fact that the

server can verify whether the tokens were generated honestly at the cost of increasing its

storage. To see this, note that bxtokeny/ρ /∈ XSet, implies that the keyword corresponding

to the token does not appear in the document corresponding to y. However, even in this

case, an honestly generated bxtoken must always yield bxtokeny/ρ = gFp(KX ,w)·xind for some

(w, ind) pair. The server can store the set XSetAll = {gFp(KX ,w)·xind} for all possible (w, ind)
pairs and check whether bxtokeny/ρ ∈ XSetAll for the received token and if not, it returns

⊥. Our protocol is described in the following figures.

4.1.1 Correctness

We argue that our protocol is correct according to definition discussed previously.

Theorem 4. The MC-SCE scheme described above is computationally correct, assuming

that TSet has a computationally correct implementation, Fτ and Fp are secure PRFs and

that AHE is a correct symmetric additively homomorphic encryption scheme.

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 14

EDBSetup(DB,F) : Let G be a cyclic group of prime order p, generated by an element g. Let Fτ

and Fp be 2 PRFs with range in {0, 1}τ and Z∗
p respectively, where τ is the security parameter. Pick

keys KS for PRF Fτ and KX ,KI for PRF Fp.

• Initialize XSet,XSetAll to an empty set and T to an empty array indexed by w ∈ W; Parse
(indi,Wi)

d
i=1 ← DB.

• For w ∈W, build XSet,XSetAll and T[w] as follows:

– Initialize t to an empty list.

– strap← Fτ (KS , w) and (Kz, Kh)← (Fτ (strap, 1), Fτ (strap, 2)).

– For 1 ≤ i ≤ d, add gFp(KX ,w)·Fp(KI ,indi) to XSetAll.

– Initialize (sum1, sum2 . . . sumk) with zeros. Initialize c ← 0 and for all ind ∈ DB(w) in
random order, do the following:

∗ Let xind← Fp(KI , ind). Let c = c+ 1, zc ← Fp(Kz, c), and y ← xind · z−1
c .

∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.
∗ For j ∈ [k], let val ← ind[attrj], Kj

h ← Fτ (Kh, j), ctj ← AHE.Enc(Kj
h,−val) and

sumj = sumj + val.
∗ Let ct← (ct1, ct2 . . . ctk) and append (y, ct) to t.

– for j ∈ [k], let Kj
h ← Fτ (Kh, j), sctj ← AHE.Enc(Kj

h, sumj).

– Append (0, sct1, sct2 . . . sctk) to head of t.

– T[w] = t.

• Let (TSet,KT)← TSetSetup(T) and KM ← AuthEnc.KeyGen(1τ).

• Output EDB = (TSet,XSet,KM) and MSK = (KS ,KX ,KI ,KT ,KM).

Correctness of our protocol follows from the correctness of the MC-SSE scheme of Jarecki

et al. and correctness of our additively homomorphic encryption scheme. Also, since

the TSet implementation is computationally correct, the only additional errors that can

occur in the correctnesss game, can be due to either collisions in the PRF outputs or

two keyword-identifier pairs mapping to the same xtag using Fp(KI , ·) and Fp(KX , ·).
But since the PRF outputs are indistinguishable from random, the probability of this

happening is negligible.

Next, we provide a proof that our protocol FltAvg is secure. To begin, we show security

against honest but curious servers.

4.1.2 Security against adversarial server

Security follows the same high level idea as [8]. However, there are some important

differences. While the leakage pattern captured in our protocol is still the same as in

[8], the server’s leakage profile in [8] is defined in terms of the indices of the relevant

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 15

GenToken(Q,EDB): Parse Q as (ϕ(w̄), attr, f) and MSK as (KS ,KX ,KI ,KT ,KM). Assume

ϕ(w̄) = w1 ∧ w2 . . . ∧ wn. WLOG, let w1 be the s-term, i.e. the term with the least frequency, chosen
by D. Also, let attr be the jth0 computable attribute.

• D computes stag← TSetGetTag(KT , w1), strap← Fτ (KS , w1).

• For i = 2 to n, do : ρi
$←− Z∗

p and set bxtrapi ← gFp(KX ,wi)·ρi .

• env← AuthEnc.Enc(KM , (j0, stag, ρ2, . . . , ρn)).

• Output SKQ = (j0, env, strap, bxtrap2, . . . , bxtrapn).

SCompute(EDB,SKQ): Client C on input the token SKQ = (j0, env, strap, bxtrap2, . . . , bxtrapn), does
the following:

• (Kz,Kh)← (Fτ (strap, 1), Fτ (strap, 2)).

• Send to the server E the message (env, bxtoken[1], bxtoken[2] . . .), where bxtoken[.] is computed as
follows :

– For c = 1, 2 . . ., until E sends stop, do:

∗ zc ← Fp(Kz, c) and bxtoken[c, i]← bxtrapzci ∀ 2 ≤ i ≤ n.
∗ Set bxtoken[c]← (bxtoken[c, 2] . . . bxtoken[c, n]).

• Kj0
h ← Fτ (Kh, j0).

• When the server sends stop, along with it, it sends (temp, n). Output AHE.Dec(Kj0
h , temp)/n.

Server E with input EDB = (TSet,XSet,KM) responds as follows:

• (j0, stag, ρ2, . . . ρn)← AuthEnc.Dec(KM , env).

• Get t← TSetRetrieve(TSet, stag).

• Let (0, sct1, sct2 . . . sctk) be the first tuple of t. temp← sctj0 and cnt← 0.

• For c = 1, 2, . . . , |t| − 1, do:

– Let the c+ 1th tuple of t be (y, ct1, . . . , ctk) and set flag to False

– For bxtoken[c] as received from C, do for i ∈ [2 . . . n]:

∗ If bxtoken[c, i]y/ρi /∈ XSetAll, then return ⊥.
∗ If bxtoken[c, i]y/ρi /∈ XSet, then set flag to True.

– If flag == True, then temp = temp+ ctj0 and cnt = cnt+ 1.

• When the last tuple in t is reached, send (stop, (temp, |t| − 1− cnt)) to C.

documents, whereas, this cannot be the case with our protocol, as the functionality now

does not allow the server to learn the indices of the relevant documents.

For ease of exposition, the following proof outline restricts to non-adaptive security, and

to 2 keyword conjunctive queries of the form w1 ∧ w2. Additionally, we assume there is

only one attribute in CompAttr, which is attr. The proof can be readily adapted to the

general case.

The sequence of queries - q, consists of Q queries with q[i] = ((s[i] ∧ x[i]), attr, f),

where attr ∈ CompAttr and f ∈ FltAvg. To ease notation, we henceforth represent each

query q[i] as a pair of the s-word and x-word: (s[i],x[i]) since the other 2 components of

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 16

the query are fixed. For simplicity, we also assume, as in [8], that there are no repeating

queries. The leakage from the protocol is quantified as L(DB,q) = (N, s̄, SP,RP, IP) where

N, s̄, SP are as defined in [8], whereas RP, IP, albeit capturing the same pattern as in [8],

are defined differently. For completeness, we describe the full leakage here.

Let Tw = |DB(w)| and let I (w) denote the list of indices corresponding to keyword w

permuted in random order. We denote by I (w)[c] the cth entry of I (w). L(DB,q) is then
defined as consisting of the following:

• N is equal to
∑d

i=1 |Wi|, the total number of times keywords appear in documents,

which is equal to the size of XSet leaked to adversary.

• s̄ is the equality pattern, which represents the repetition pattern of s-words. For

example, if there were 5 queries with s-words being (s1, s2, s1, s3, s2), then s̄ =

(1, 2, 1, 3, 2). Formally, to define s̄[i], find the least 1 ≤ j ≤ i s.t. s[j] = s[i] and set

s̄[j] = |{s[1], s[2] . . . s[j]}|, i.e. the number of unique s-words occuring till query j.

• SP is the size pattern, which represents the number of documents matching s-word

of each query. Formally, define SP[i] = |DB(s[i])|.

• RP is the results pattern, which represents the positions of the documents in I(s[i])

which also contain x[i]. Formally, it is equal to {R1, R2 . . . RQ}, where Ri is defined

as {c : I (s[i])[c] ∈ DB(x[i])}. Thus, for query i, if s[i] = w, then Ri contains the

positions in the permutation of list T[w] such that the associated documents contain

x[i] in addition to s[i] = w.

• IP is the conditional intersection pattern and is defined as {S1, S2 . . . SQ}, where
Si = {S1

i , S
2
i . . . S

Ts[i]

i } and Sj
i = {(k, c) | (1 ≤ k < i)∧ (x[k] = x[i])∧ (I (s[k])[c] =

I(s[i])[j])}. The intersection pattern captures the information leaked when distinct

queries with the same x-words and a common document index in the corresponding

s-word document list, result in the same xtag element being checked for containment

in XSet. For instance, query 5 may access a list whose 4th tuple contains a pointer

to document ind∗, and query 8, with same x-word, may access a different list whose

6th tuple contains a pointer to the same document ind∗. Then, S6
8 contains (5, 4).

Security is captured in the following theorem.

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 17

Theorem 5. Let L be the leakage function defined as above and suppose that TSet uses

the implementation Σ from [8]. Then the scheme FltAvg is an L-semantically secure

MC-SCE scheme, against non-adaptive attacks where all the queries are 2-conjunctions,

assuming that the DDH assumption holds in G, Fτ and Fp are secure PRFs, AHE is

a symmetric additively homomorphic IND-CPA secure encryption scheme and that the

conditions corresponding to Σ, as stated in [8] hold.

The proof follows the high level strategy of [8]. To construct EDB = (TSet,XSet), the

simulator does the following. To construct T[w], for each queried and unique s-word

w (found using s̄), it chooses ct as encryptions of 0λ and samples y randomly for each

document in the list. Then, it invokes the TSet simulator to obtain TSet and also stag

for all queries. For constructing XSet, it picks random elements in G. Recall that xtag =

gFp(KX ,w)·xind and y = xind · z−1
c , where xind, zc are computed by PRFs. A natural proof

strategy is to replace zc, Fp(KX , w), xind by random values and then invoke the DDH

assumption to choose xtag randomly. However, as noted by [8, Proof of Theorem 5], there

is a subtlety here since xind is also used in computing y, and zc is additionally used in

token generation. [8] deals with this issue by a careful rearrangement of computation,

which allows them to argue indistinguishability – the same strategy can be applied in our

case.

Additionally, the simulator must simulate the transcipts of the SCompute protocol. To

do this, it must generate tokens that are indistinguishable from an honest client’s tokens

using the leakage, namely, the result pattern RP and intersection pattern IP. Recall

that for a 2 conjunction, the client’s query contains the encryption env and tokens

bxtoken1, . . . , bxtokenTw . Here, env contains attribute index j0, the tag stag for the query’s

s-word, and a randomly chosen element ρ. The tag stag may be generated using the TSet

simulator and the remaining values can be computed honestly. It remains to generate

indistinguishable tokens {bxtokenc}c∈[Tw].

To do this, the simulator constructs a table XSetCheck indexed by query number k and

a counter c over Tw. The entry (k, c) contains the value xtag that is checked for XSet

containment by that (query, tuple) pair. Now, if the token bxtoken corresponding to

(query k, tuple c) results in an XSet hit, then the simulator learns this via the result

pattern RP. Via the intersection pattern IP, the simulator may also learn whether this

entry in XSet has been accessed before. If the entry has not been accessed before but

results in a XSet hit, the simulator randomly chooses a new element xtag of XSet, marks

c⃝ 2016, Indian Institute of Technology Delhi

4.1 Protocol 18

it “used” and stores this value in the table XSetCheck at index (k, c). If the entry has

not been accessed before, but results in a XSet miss, the simulator just chooses a random

element from Z∗
p. It computes the corresponding token as bxtoken = xtagρ/y to mimic the

real world. Finally, if the entry has been accessed before, then the simulator uses IP to

compute the previous (query, tuple) pair that accessed it, and retrieves the corresponding

xtag from XSetCheck. It generates the new bxtoken = xtagρ
′/y′ with a fresh ρ′ and y′ which

are specified in env and TSet respectively. This enables the simulator to generate tokens

to mimic the real world.

4.1.3 Security against malicious clients

Next, we proceed to show that our protocol is secure against adversarial clients. The

leakage function is L(DB, w̄) = (|DB(w1)|, cnt), where w̄ = (w1, w2, . . . , wn), w1 WLOG

is the assumed s-word and cnt is the number of documents matching the query, which

is given to client in the clear for average computation. Recall that each query, Q =

(ϕ(w̄), attr, f) may be represented by w̄, since we assume for ease of exposition that

attr, f are fixed and the boolean function is a conjunction.

Security against adversarial clients is captured in the following theorem.

Theorem 6. Let L be the leakage function as defined above. The scheme FltAvg

is an L-semantically secure MC-SCE scheme, against malicious clients with adaptive

queries assuming that the DDH assumption holds in G, Fτ , Fp are secure PRFs, AHE

is a symmetric additively homomorphic IND-CPA secure encryption scheme, TSet has a

computationally correct implementation and AuthEnc is an IND-CPA and Strongly-UF-

CMA authenticated encryption scheme.

The proof is similar to the proof of security against malicious clients described in [26]. The

main difference is the attack described in Section 4, which is that by constructing some

bxtoken maliciously, the client can arrange that the value bxtokeny/ρ does not belong to

XSet, even when it should. This ensures that the server does not include the corresponding

attribute value in the overall answer. By making successive queries that contain honest

and corrupt tokens respectively in the same position, the client may learn exact attribute

values in individual documents, instead of aggregate values.

c⃝ 2016, Indian Institute of Technology Delhi

4.2 Support for Range Queries 19

To get around this, the protocol includes the check bxtokeny/ρ
?
∈ XSetAll, which the

simulator mimics as follows. It checks the validity of received tokens by checking if

bxtoken[c, i] = gFp(KX ,wi)·ρi·zc , where the terms on the right hand side are generated

honestly. If this does not hold, the simulator returns ⊥. This test is equivalent to

the real world check of whether bxtoken[c, i]y/ρi ∈ XSetAll. If the check succeeds, the

simulator concludes that the query is honest and queries the functionality oracle for the

answer. It encrypts the answer using AHE with the key generated from the chosen s-word,

and sends this to A. Detailed proof of the same can be found in the appendix.

We presented our protocols for the case of conjunctions and proof of security against an

adversarial server in the non-adaptive setting. We note that these limitations can be

overcome as in [26] and [8]. Any query that is in the searchable normal form (SNF), i.e.

queries of the type - w1 ∧ ϕ(w2, w3 . . . wn), can be supported by choosing the s-word as

w1 and having the server compute whether some ind ∈ DB(w1) is part of the final answer

by calculating νi ← boolean value of predicate bxtoken[c, i]y/ρi
?
∈ XSet for 2 ≤ i ≤ n and

checking if ϕ(ν2, ν3 . . . νn) = True. Note that this modification does not change the search

complexity or leakage (in addition to learning ϕ) compared to the case when the same

keywords were used in pure conjunctive form. Also, queries of the type w1∨w2∨. . . wn can

be efficiently supported as in [8] by considering each wi as a separate s-word and having

the data owner provide an stag for each of the wi. The client then runs the remaining

protocol as before, but now switching to the next stag value on every stop received from

the server. Finally, we note that we may also achieve privacy of the filtering predicate

exactly as in [26].

4.2 Support for Range Queries

Here we describe how our basic protocol can be extended to deal with range filtering

on attributes. For example, with this extension, our protocol will support queries of

the type - “Compute average of attribute Income for all the citizens that have Age in

range [20 . . . 40] and State = Timbaktu and Gender = Male”. In order to support such

queries, we make use of the “Logarithmic-BRC/URC” schemes to support range queries,

as proposed by Loannis et. al. in [13]. We proceed to describe the main ideas.

For simplicity, let us assume that there is only one attribute, say attrR, on which range

queries are performed, and that this attribute takes values from domain Dom. Also,

c⃝ 2016, Indian Institute of Technology Delhi

4.2 Support for Range Queries 20

for simplicity we restrict attention to conjunctive queries as in the above example. Our

protocol can easily be extended to include general queries involving range filtering on

multiple attributes.

So far, we have assumed that keywords are represented by attribute-value pairs (attr, val)

where val is a single value. But now to support ranges, we extend the meaning of val to

include a range, so that a keyword can now correspond to a range for attribute attrR. We

define Range(w) to be the range associated with keyword w if any, and NULL otherwise.

During EDBSetup, as in the Log-BRC/URC scheme of [13], the data owner builds a binary

tree over the domain Dom. Each node in the tree is then assigned a unique keyword, which

we refer to as rword. These rwords are similar to the keywords in the original protocol,

except that each of them now correspond to a range of values in the domain Dom, instead

of just a single value. Now, for each (indi,Wi) ∈ DB, let val be the value of the attribute

attrR in the corresponding document. Append to Wi the rword for the nodes on the path

from the root of the binary tree to val. This results in the original DB getting changed

to a new database, which we call DB′. Now, the data owner builds EDB in a similar way

as before by running EDBSetup of the original protocol over DB′.

In the GenToken procedure, the data owner on receiving the query Q = ((w1 ∧
w2 ∧ . . . wn), attr, f), checks if Range(wi) ̸= NULL for some wi. If not, that means

that there are no range queries involved, and the protocol continues to work as before.

If on the other hand, say WLOG that Range(w1) ̸= NULL, then the data owner

modifies the query (w1 ∧ w2 ∧ . . . wn) to incorporate the range filtering. It finds the

nodes s.t. their associated ranges cover the entire range Range(w1); this set is known

as the “range cover” of Range(w1). This step is performed using either Best Range

Cover(BRC)/Uniform Range Cover (URC) in the binary tree created in EDBSetup.

For more details on BRC/URC, please refer to [13]. Let {rkw1, rkw2 . . . rkwr} be the

corresponding keywords associated with these nodes. Then, it changes the query

(w1∧w2∧ . . . wn) to (rkw1∨ rkw2∨ . . . rkwr)∧w2∧ . . . wn and continues with the GenToken

procedure from the previous protocol run on the new query. Intuitively, since the ranges

of the nodes found by BRC/URC correspond to a partition of Range(w1), so all the

documents having ind[attrR] ∈ Range(w1) also satisfy ind[attrR] ∈ (rkw1 ∨ rkw2 ∨ . . . rkwr)

and vice versa. Thus, by simply replacing the query with a new one, our protocol can be

made to handle range filtering.

Arguments for correctness, security and leakage follow as before, as the problem has

c⃝ 2016, Indian Institute of Technology Delhi

4.3 Support for Variance and other functions 21

been reduced to our earlier case. The complete protocol supporting conjunction of one

range query and atleast one equality query, is provided in the appendix. As discussed

earlier, handling pure range queries requires some additional work, as these may not be

expressible in SNF form.

4.3 Support for Variance and other functions

We note that our protocol FltAvg can be readily extended to support evaluation of

functions such as variance and correlation by replacing the additive homomorphic scheme

by a homomorphic scheme which is capable of evaluating degree 2 polynomials, such as [5].

In general, we can handle more sophisticated functions by increasing the homomorphic

capabilities of the underlying encryption scheme. However, even the most efficient

versions of fully homomorphic encryption are too slow in practice [17, 40, 32, 11], so

for computing more general functions we provide a different protocol in Section 5.

c⃝ 2016, Indian Institute of Technology Delhi

Chapter 5

Computing General Functions

5.1 Protocol

In this section, we provide a protocol which can additionally support queries of format:

“Compute function f on attribute attr for all data records that match keyword w”. Again,

we rely on the assumption that the number of records matching a given keyword will be

a small fraction of the total number of records. We note that f can be arbitrary, but the

filtering criteria is restricted to single keyword match rather than an arbitrary Boolean

predicate.

For simplicity, let us assume that the only attribute supporting computation of general

functions is denoted by attr, and that it takes Boolean values. We note that it is

straightforward to lift these restrictions. Our protocol requires that the data owner

maintain information about the frequency of each keyword, namely the number of records

Tw that match a keyword w, i.e. Tw = |DB(w)|. Our protocol is inspired from the

single key functional encryption scheme of Sahai and Seyalioglu [36], and can be seen

as a “dual” of the same – [36] supports a single function key and unbounded number of

ciphertexts whereas our protocol can be interpreted as supporting a single ciphertext and

an unbounded number of function queries. Details follow.

The data owner D, during the setup phase, chooses two PRFs Fτ FS with range {0, 1}τ

as well as a symmetric key encryption scheme SKE. For each keyword w, D sets Kg ←
Fτ (KS, w), where KS is a PRF key. For c ∈ [Tw], b ∈ {0, 1}, she constructs 2Tw secret

keys of the symmetric key encryption scheme SKE as {GSKb,c ← SKE.KeyGen} using

randomness generated by PRF FS(Kg, bc). For c ∈ [Tw], she checks the value of attribute

attr in the corresponding data record: if indc[attr] = 0, then she sets GSKc = GSK0,c, else

GSKc = GSK1,c. The value GSKc is now appended to the list T[w].

When the client makes a query Q = (ϕ(w̄), attr, f) of the aforementioned format, the

data owner retrieves the s-word w and using the master key, generates the symmetric

keys (GSK0,c,GSK1,c) for c ∈ [Tw]. Next, she generates a garbled circuit Γ for f , along

c⃝ 2016, Indian Institute of Technology Delhi

5.2 Correctness and Security 23

with the 2Tw labels denoted by {(Lf
0,c, L

f
1,c)}c∈[Tw]. Then she encrypts label Lf

b,c with key

GSKb,c to obtain GCTb,c for c ∈ [Tw], b ∈ {0, 1}. She permutes the two encryptions for all

Tw pairs, namely, she chooses Tw bits {bc}c∈[Tw] and sets GCT =
{
(GCTbc,c,GCTb̄c,c)

}
c∈[Tw]

.

The garbled ciruit Γ, the label encryptions GCT and the map M of the output wire labels

of the circuit to 0 and 1 and are provided to the client. The client provides the garbled

circuit and the 2Tw label encryptions to the server along with the stag required for search.

The server retrieves the list t using stag as before, and obtains {GSKc}c∈[Tw]. These

Tw secret keys decrypt exactly Tw labels: those corresponding to the attribute values

indc[attr] for c ∈ [Tw]. Using these, the server evaluates the garbled circuit, and recovers

an output label. It returns this label to the client as the answer. The client, having

received the map from the output label to the bit 0 and 1 recovers the output of the

function in the clear. The protocol is described in the follwing figure.

5.2 Correctness and Security

Correctness follows directly from correctness of the search algorithm, correctness of

symmetric key encryption and correctness of garbled circuits. Security follows from the

security of garbled circuits, semantic security of symmetric key encryption and security

of the search protocol. Let us examine security against an honest but curious server.

Intuitively, in addition to the leakage resulting from search, the server sees a garbled

circuit, all pairs of encrypted labels of the garbled circuit, and one set of decrypted labels,

corresponding to the values indc[attr] for c ∈ [Tw]. From this, he can evaluate the output

label of the garbled circuit which is random and fresh for each query. Since he is not

provided the mapping of this label to the output, he does not learn anything. We define

the simulator in the ideal world so that it constructs the garbled circuit and decrypted

labels using the simulator for garbled circuits. Then, given an adversary A who can

distinguish the output of the real and ideal game (Definition 2), we can construct an

adversary B who can distinguish between the real and simulated garbled circuit.

More formally, B runs A who outputs DB, from which the set x = (indc[attr])c∈[Tw] may be

obtained. B constructs EDB as in the real world, choosing a random set of Tw symmetric

key encryption keys to be inserted in the list and provides this to A. Next A specifies a

query Q = (ϕ(w̄), attr, f). B returns (x, f) as the garbled circuits challenge and receives

a garbled circuit, one set of labels corresponding to x and a map from the output labels

c⃝ 2016, Indian Institute of Technology Delhi

5.2 Correctness and Security 24

EDBSetup(DB,F): Let Fτ and FS be PRFs with range {0, 1}τ and SKE be a symmetric key

encryption scheme. Pick key KS for PRF Fτ .
• Initialize T to an empty array indexed by w ∈W.

• For w ∈W, build T[w] as follows:

– Initialize t to an empty list. Let Kg ← Fτ (KS , w) and Tw = |DB(w)|.
– Initialize c← 0 and for all ind ∈ DB(w) in random order, do the following:

∗ For b ∈ {0, 1}, generate 2Tw SKE secret keys (GSK0,c,GSK1,c) using SKE.KeyGen,
where FS(Kg, c) is used to generate the randomness used by SKE.KeyGen.

∗ If indc[attr] = 0, then let GSKc = GSK0,c, else GSKc = GSK1,c.
∗ Append GSKc to t.

– Set T[w] = t.

• Let (TSet,KT)← TSetSetup(T) and KM ← AuthEnc.KeyGen(1τ).

• Output EDB = TSet and MSK = (KS ,KT ,KM).

GenToken(Q,EDB): Parse Q as (w, attr, f) and MSK as (KS ,KT ,KM).
• D computes stag← TSetGetTag(KT , w), and Kg = Fτ (KS , w)

• For c ∈ [Tw], D generates GSK0,c,GSK1,c by invoking SKE.KeyGen using randomness FS(Kg, c)
.

• D generates a garbled circuit Γ for f , along with the 2Tw labels denoted by {(Lf
0,c, L

f
1,c)}c∈[Tw]

and the map M that maps the output labels {Lout
b , Lout

b̄
} to {0, 1}.

• D encrypts label Lf
b,c with key GSKb,c to obtain GCTb,c for c ∈ [Tw], b ∈ {0, 1}.

• D permutes the two encryptions for all Tw pairs, namely, she chooses Tw bits {bc}c∈[Tw] and

sets GCT =
{
(GCTbc,c,GCTb̄c,c)

}
c∈[Tw]

.

• env← AuthEnc.Enc(KM , (Γ,GCT, stag)).

• Output SKQ = (env,M).

SCompute(EDB, SKQ): Client C on input the token SKQ = (env,M), does the following:
• Send to the server E the message env.

• When the server sends Lout, use map M to determine the bit b it corresponds to. Output b.
Server E with input EDB = (TSet,KM) responds as follows:
• (Γ,GCT, stag)← AuthEnc.Dec(KM , env).

• Get t← TSetRetrieve(TSet, stag).

• For c ∈ [Tw], do:

– Let the cth tuple of t contain GSKc.

– Try to decrypt GCTbc,c,GCTb̄c,c with GSKc. Exactly one ciphertext decrypts to yield a

label Lf
c .

• Execute the garbled circuit Γ with labels {Lf
c }c∈[Tw] to obtain output label Lout. Return Lout

to the client.

to 0 and 1. He encrypts this set of labels with the keys provided in EDB and encrypts

random labels using random keys for the remaining Tw positions. He returns this garbled

circuit and these encryptions to the server A. This is repeated for every query. Finally

A outputs a bit, which B also outputs. If A can distinguish between the real and ideal

c⃝ 2016, Indian Institute of Technology Delhi

5.3 Discussion 25

world, then it follows that either the semantic security of symmetric key encryption does

not hold, or the security of garbled circuits does not hold.

5.3 Discussion

We note that even though the protocol can support arbitrary functions and does not

use any “heavyweight” cryptography, it incurs the disadvantages that search is only

restricted to a single keyword and the data owner D must now maintain the size of

matching documents for each keyword, namely |DB(w)| for all w ∈ W. These restrictions

are required since the data owner must know the input size for the garbled circuit

she generates. Note that even for SSE, D was required to maintain some information

regarding |DB(w)| so as to compute s-words, but this was mitigated by the observation

that in most datasets the number of very frequent words is very small and the data owner

can keep a small state with sufficient information to choose light s-terms (using Bloom

filters for example) [8, Sec 3.1.1]. We remark that in the multi-client setting that we

consider, the data owner may not be as resource limited as the client considered by SSE,.

Still, it is desirable to overcome these restrictions; we leave this as an open problem.

c⃝ 2016, Indian Institute of Technology Delhi

Chapter 6

Related Work

In this section, we describe some related work. Functional Encryption (FE) [38, 37]

enables computing of arbitrary functions on encrypted data but function computation

takes time polynomial in the data set size even for simple functions [4, 12, 7, 6, 21].

Additionally, the security model of FE assumes a single malicious adversary that

encompasses the server and client. By contrast, we follow the norm in SSE and assume

that the server and client do not collude. We believe this is a reasonable assumption,

especially for large data applications and deserves to be explored more in FE constructions.

A variant of FE, called “Controlled FE” [33] does provide efficient protocols, but also

suffers from computation time polynomial in dataset size. Another primitive related

to our work is structured encryption [9]. Structured encryption generalizes symmetric

searchable encryption (SSE) to the setting of arbitrarily structured data. In the context

of cloud storage, structured encryption allows a client to encrypt data without losing the

ability to query and retrieve it efficiently. Finally, we note that recent work has studied

functionalities other than search (see [42, 10, 35] and references therein) but these are

restricted to the single client setting.

c⃝ 2016, Indian Institute of Technology Delhi

Bibliography

[1] C. Arun. http://www.thehindu.com/opinion/lead/

lead-article-on-aadhaar-bill-by-chinmayi-arun-\

privacy-is-a-fundamental-right/article8366413.ece.

[2] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of Garbled Circuits. In CCS,

2012.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In EUROCRYPT, 2004.

[4] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In

CRYPTO, 2001.

[5] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In

TCC, 2005.

[6] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.

In TCC, 2007.

[7] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without

random oracles). In CRYPTO, pages 290–307, 2006.

[8] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-

scalable searchable symmetric encryption with support for boolean queries. In

CRYPTO, 2013.

[9] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In

ASIACRYPT, 2010.

[10] M. Chase and E. Shen. Pattern matching encryption. http://elastic.org/~fche/

mirrors/www.cryptome.org/2014/08/pattern-matching-encryption.pdf,

2014.

[11] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung, D. Pao, and

I. Verbauwhede. High-speed polynomial multiplication architecture for ring-lwe and

she cryptosystems. Circuits and Systems I: Regular Papers, IEEE Transactions on,

62(1):157–166, 2015.

c⃝ 2016, Indian Institute of Technology Delhi

http://www.thehindu.com/opinion/lead/lead-article-on-aadhaar-bill-by-chinmayi-arun-\privacy-is-a-fundamental-right/article8366413.ece
http://www.thehindu.com/opinion/lead/lead-article-on-aadhaar-bill-by-chinmayi-arun-\privacy-is-a-fundamental-right/article8366413.ece
http://www.thehindu.com/opinion/lead/lead-article-on-aadhaar-bill-by-chinmayi-arun-\privacy-is-a-fundamental-right/article8366413.ece
http://elastic.org/~fche/mirrors/www.cryptome.org/2014/08/pattern-matching-encryption.pdf
http://elastic.org/~fche/mirrors/www.cryptome.org/2014/08/pattern-matching-encryption.pdf

BIBLIOGRAPHY 28

[12] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA

Int. Conf., pages 360–363, 2001.

[13] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garofalakis.

Practical private range search revisited. In sigmod, 2016.

[14] W. A. Drazen, E. Ekwedike, and R. Gennaro. Highly scalable verifiable encrypted

search. In Communications and Network Security (CNS), 2015 IEEE Conference

on, pages 497–505. IEEE, 2015.

[15] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, 1985.

[16] D. Evans, J. Katz, and Y. Huang. Quid-pro-quo-tocols: Strengthening semi-honest

protocols with dual execution. 2014 IEEE Symposium on Security and Privacy,

0:272–284, 2012.

[17] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages

169–178, 2009.

[18] I. Government. http://www.censusindia.gov.in/2011-prov-results/

paper2-vol2/data_files/kerala/Analysis_Census_Data.pdf.

[19] U. Government. http://www.census.gov/ces/dataproducts/index.html.

[20] U. Government. http://factfinder.census.gov/.

[21] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-

grained access control of encrypted data. In ACM Conference on Computer and

Communications Security, pages 89–98, 2006.

[22] J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin

and J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT 2016: 35th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, 2016.

[23] A. Hamlin, N. Schear, E. Shen, M. Varia, S. Yakoubov, and A. Yerukhimovich.

Cryptography for big data security. In Big Data: Storage, Sharing, and Security.

Auerbach Publications, 2016. https://eprint.iacr.org/2016/012.pdf.

c⃝ 2016, Indian Institute of Technology Delhi

http://www.censusindia.gov.in/2011-prov-results/paper2-vol2/data_files/kerala/Analysis_Census_Data.pdf
http://www.censusindia.gov.in/2011-prov-results/paper2-vol2/data_files/kerala/Analysis_Census_Data.pdf
http://www.census.gov/ces/dataproducts/index.html
http://factfinder.census.gov/
https://eprint.iacr.org/2016/012.pdf

BIBLIOGRAPHY 29

[24] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation

using garbled circuits. In Proceedings of the 20th USENIX Conference on Security,

SEC’11, pages 35–35, 2011.

[25] Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using

symmetric cut-and-choose. In CRYPTO, 2013.

[26] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced symmetric

private information retrieval. In 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages

875–888, 2013.

[27] R. Kerbaj and J. Ungoed-Thomas. http://www.thesundaytimes.co.uk/sto/news/

uk_news/National/article1258476.ece?CMP=OTH-gnws-standard-2013_05_11.

[28] B. Kreuter, A. Shelat, B. Mood, and K. R. B. Butler. PCF: A portable circuit format

for scalable two-party secure computation. In Proceedings of the 22th USENIX

Security Symposium, Washington, DC, USA, August 14-16, 2013, pages 321–336,

2013.

[29] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious

adversaries. In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,

USA, August 8-10, 2012, pages 285–300, 2012.

[30] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.

In CRYPTO, 2013.

[31] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay a secure two-party

computation system. In In USENIX Security Symposium, pages 287–302, 2004.

[32] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be

practical? In CCSW, 2011.

[33] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and

C. Gunter. Controlled functional encryption. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’14, 2014.

[34] I. M. official statement. https://www.ipsos-mori.com/newsevents/latestnews/

1390/Ipsos-MORI-response-to-the-Sunday-Times.aspx.

c⃝ 2016, Indian Institute of Technology Delhi

http://www.thesundaytimes.co.uk/sto/news/uk_news/National/article1258476.ece?CMP=OTH-gnws-standard-2013_05_11
http://www.thesundaytimes.co.uk/sto/news/uk_news/National/article1258476.ece?CMP=OTH-gnws-standard-2013_05_11
https://www.ipsos-mori.com/newsevents/latestnews/1390/Ipsos-MORI-response-to-the-Sunday-Times.aspx
https://www.ipsos-mori.com/newsevents/latestnews/1390/Ipsos-MORI-response-to-the-Sunday-Times.aspx

BIBLIOGRAPHY 30

[35] R. A. Popa. Building practical systems that compute on encrypted data. PhD thesis,

Massachusetts Institute of Technology, 2014.

[36] A. Sahai and H. Seyalioglu. Worry-free encryption: Functional encryption with

public keys. In Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, 2010.

[37] A. Sahai and B. Waters. Functional encryption:beyond

public key cryptography. Power Point Presentation, 2008.

http://userweb.cs.utexas.edu/bwaters/presentations/ files/functional.ppt.

[38] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages

457–473, 2005.

[39] A. Sinha and H. T. Pranesh Prakash.

[40] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud storage. In

Security and Privacy (SP), 2013 IEEE Symposium on, pages 253–267. IEEE, 2013.

[41] P. Swabey. http://www.information-age.com/technology/

mobile-and-networking/123457043/ee-and-ipsos-mori-face-privacy-backlash-over-mobile-data-analysis.

[42] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries

over encrypted data. In Proceedings of the 39th international conference on Very

Large Data Bases, PVLDB’13, pages 289–300. VLDB Endowment, 2013.

[43] Wikipedia. https://en.wikipedia.org/wiki/Aadhaar.

[44] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th

Annual Symposium on Foundations of Computer Science, 1986.

[45] S. Zahur and D. Evans. Circuit structures for improving efficiency of security and

privacy tools. In IEEE Symposium on Security and Privacy, 2013.

[46] A. Zelin. https://www.mrs.org.uk/pdf/Andrew_Zelin_presentation.pdf.

c⃝ 2016, Indian Institute of Technology Delhi

http://www.information-age.com/technology/mobile-and-networking/123457043/ee-and-ipsos-mori-face-privacy-backlash-over-mobile-data-analysis
http://www.information-age.com/technology/mobile-and-networking/123457043/ee-and-ipsos-mori-face-privacy-backlash-over-mobile-data-analysis
https://en.wikipedia.org/wiki/Aadhaar
https://www.mrs.org.uk/pdf/Andrew_Zelin_presentation.pdf

Appendix A

Protocol supporting Range Queries

The protocol supporting range queries is provided in the following figures. Changes from

our original protocol are highlighted in blue.

EDBSetup(DB,F): Let Fτ and Fp be 2 PRFs with range in {0, 1}τ and Z∗
p respectively, where τ is

the security parameter. Pick keys KS for PRF Fτ and KX ,KI for PRF Fp.
• Initialize XSet,XSetAll to empty set and T to an empty array indexed by w ∈ W; Parse
(indi,Wi)

d
i=1 ← DB.

• Build a new database DB′ as follows:

– As in the Log-BRC/URC scheme, build a binary tree over the domain Dom.

– For each node in the tree, assign a unique keyword, referred to as rword.

– For (indi,Wi) ∈ DB, do: val← value of the attribute attrR in the document with index indi;
W′

i ← Wi ∪ {rword for nodes on the path in the tree from the root to val}; Add (indi,W
′
i)

to DB′.

• W′ ← ∪iW′
i; For w ∈W′, build XSet,XSetAll and T[w] as follows:

– Initialize t to an empty list.

– strap← Fτ (KS , w) and (Kz, Kh)← (Fτ (strap, 1), Fτ (strap, 2)).

– ∀(1 ≤ i ≤ d), add gFp(KX ,w)·Fp(KI ,indi) to XSetAll.

– Initialize (sum1, sum2 . . . sumk) with zeros. Initialize c ← 0 and for all ind ∈ DB′(w) in
random order, do:

∗ Let xind← Fp(KI , ind). Let c = c+ 1, zc ← Fp(Kz, c), and y ← xind · z−1
c .

∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.

∗ for j ∈ [k], let val ← ind[attrj], Kj
h ← Fτ (Kh, j), ctj ← AHE.Enc(Kj

h,−val) and
sumj = sumj + val.

∗ Let ct← (ct1, ct2 . . . ctk) and append (y, ct) to t.

– for j ∈ [k], let Kj
h ← Fτ (Kh, j), sctj ← AHE.Enc(Kj

h, sumj).

– Append (0, sct1, sct2 . . . sctk) to head of t and set T[w] = t.

• Let (TSet,KT)← TSetSetup(T) and KM ← AuthEnc.KeyGen(1τ).

• Output EDB = (TSet,XSet,KM) and MSK = (KS ,KX ,KI ,KT ,KM).

c⃝ 2016, Indian Institute of Technology Delhi

32

GenToken(Q,MSK): Parse Q as (ϕ(w̄), attr, f) and MSK as (KS ,KX ,KI ,KT ,KM). Assume

ϕ(w̄) = w1 ∧ w2 . . . ∧ wn, where WLOG Range(w1) ̸= NULL and n ≥ 2. Also, let attr be the jth0
computable attribute.

• Let rkw1, rkw2 . . . rkwr be the keywords corresponding to the nodes given by RC(Range(w1)), where
RC is one of BRC/URC.

• ϕ′(w̄)← ((rkw1 ∨ rkw2 ∨ . . . rkwr) ∧ w2 ∧ . . . wn)

• Rename ϕ′(w̄) to ((w1 ∨ w2 ∨ . . . wr) ∧ wr+1 ∧ . . . wr+n−1.

• WLOG, assume wr+n−1 as the sword out of {wr+1, wr+2 . . . wr+n−1} (chosen by D).
• Compute stag← TSetGetTag(KT , wr+n−1), strap← Fτ (KS , wr+n−1).

• For i = 1 to r + n− 2, do : ρi
$←− Z∗

p and set bxtrapi ← gFp(KX ,wi)·ρi .

• env← AuthEnc.Enc(KM , (j0, stag, ρ1, ρ2, . . . ρr+n−2)).

• Output SKQ = (j0, env, strap, bxtrap1, bxtrap2 . . . bxtrapr+n−2).

SCompute(EDB, SKQ): Client C on input the token

SKQ = (j0, env, strap, bxtrap1, bxtrap2 . . . bxtrapr+n−2), does the following:
• (Kz,Kh)← (Fτ (strap, 1), Fτ (strap, 2)).

• Send to the server E the message (env, bxtoken[1], bxtoken[2] . . .), where bxtoken[.] is computed as
follows :

– For c = 1, 2 . . ., until E sends stop, do:

∗ zc ← Fp(Kz, c) and bxtoken[c, i]← bxtrapzci ∀ 1 ≤ i ≤ r + n− 2.
∗ Set bxtoken[c]← (bxtoken[c, 1] . . . bxtoken[c, r + n− 2]).

• Kj0
h ← Fτ (Kh, j0).

• When the server sends stop, along with it, it sends (temp, n). Output AHE.Dec(Kj0
h , temp)/n.

Server E with input EDB = (TSet,XSet,KM) responds as follows:
• Let (j0, stag, ρ1, . . . ρr+n−2)← AuthEnc.Dec(KM , env). Let t← TSetRetrieve(TSet, stag).

• Let (0, sct1, sct2 . . . sctk) be the first tuple of t. temp← sctj0 and cnt← 0.

• For c = 1, 2, . . . , |t| − 1, do:

– Let the c+ 1th tuple of t be (y, ct1, . . . , ctk).

– For bxtoken[c] as received from C, do for i ∈ [1 . . . r + n− 2]:

∗ If bxtoken[c, i]y/ρi /∈ XSetAll, then return ⊥.
∗ Define νi = boolean value of the predicate (bxtoken[c, i]y/ρi ∈ XSet)

– If ((ν1∨ν2∨ . . . νr)∧νr+1∧ . . . νr+n−2) = False, then temp = temp+ctj0 and cnt = cnt+1.

• When the last tuple in t is reached, send (stop, (temp, |t| − 1− cnt)) to C.

c⃝ 2016, Indian Institute of Technology Delhi

Appendix B

Proof of theorem 6: Security against

adversarial clients

Here, we provide a proof of theorem 6, which shows that the protocol FltAvg is secure

against adversarial clients. First, we provide the simulator for the same (as shown in

following figure), followed by a series of indistinguishable games which starts from the

real world and ends in the ideal world.

Let G0 denote Real
Π
A(1

λ) and G7 denote Ideal
Π
A,Sim(1

λ) as defined in the section ??. We will

create a series of modifications to G0, say Gi. Let Pi denote the probability that game

Gi outputs 1. We show that the difference between P0 and P7 is a negligible function of

the security parameter λ.

For simplicy, we assume that the query is a conjunction.

Game G1 : In game G1 we add an abort if any of the ciphertexts env accepted by the

server in SCompute has not been generated by the data owner during GenToken protocol.

By Strong-UF -CMA unforgeability of the AuthEnc scheme, P1
c
≈ P0.

Game G2 : In game G2 we add an abort if any two of the ciphertexts env generated by the

GenToken protocol are the same. By the properties of AuthEnc, we have that a collision

in ciphertext implies a collision in plaintext and as we are generating ρis randomly from

Z∗
p, the probability of a collision of all ρis is negligible. So, P2

c
≈ P1.

Game G3 : We modify game G2 by adding an abort if there exists any two different

keywords w,w′ ∈ W such that Fp(KT , w
′) = Fp(KT , w) or Fp(KX , w

′) = Fp(KX , w). This

happens with negligible probability as Fp is a PRF and hence P3
c≈ P2.

Game G4 : In the GenToken protocol, instead of encrypting the ρis, which are used to

generate bxtraps, we encrypt independently random ρ′i values to get env. We also maintain

a list called QueryTable, which is indexed by the env ciphertexts and stores the original ρis

along with the query w̄ = (w1, w2, . . . wn). We modify the SCompute protocol accordingly

c⃝ 2016, Indian Institute of Technology Delhi

34

S0(1
τ):

• Select key KS for PRF Fτ and keys KX ,KI ,KT for PRF Fp and KM for AuthEnc.

• Initialize QueryTable as an empty table. It will be indexed by env ciphertexts.

• Initialize the state to be st← (KS,KX,KI,KT,KM,QueryTable).

S1(st):

• On receiving (ϕ(w̄), attr, f) as input from A, Abort if query is not valid.

• Let w̄ be (w1, w2, . . . wn).

• Choose ρi, ρ
′
i

$←− Z∗
p ∀i ∈ (1, 2, . . . n)

• stag← Fp(KT , w1), strap← Fτ (KS , w1).

• bxtrapi ← gFp(KX ,wi)·ρi ∀i ∈ (2, 3, . . . n)

• Output (env, strap, bxtrap2, . . . bxtrapn) where env ← AuthEnc(KM , (j0, stag, ρ
′
2, . . . ρ

′
n) and set

QueryTable(env)← (w1, w2, . . . wn, ρ1, ρ2, . . . ρn, j0)

S2(st):

• On input (env, bxtoken[1], bxtoken[2], . . . bxtoken[n]) from A, Abort if QueryTable(env) = ⊥. Otherwise
get (w1, w2, . . . wn, ρ1, ρ2, . . . ρn, j0)← QueryTable(env).

• Send Q = (ϕ(w̄), attr, f) as input to the oracle which returns (DB(Q), (|DB(w1)|, cnt)).

• strap← Fτ (KS , w) and (Kz, Kh)← (Fτ (strap, 1), Fτ (strap, 2)).

• For c = 1, 2, . . . , |DB(w1)|, do:

– zc ← Fp(Kz, c).

– For bxtoken[c] = (bxtoken[c, 2] . . . bxtoken[c, n])

∗ If bxtoken[c, i] = gFp(KX ,wi)·ρi·zc continue, Else Abort.

• Kj0
h ← Fτ (Kh, j0), ciph← AHE.Enc(Kj0

h ,DB(Q)).

• After receiving |DB(w1)| bxtokens from A send (stop, (ciph, cnt)) to A.

to use ρ values from the QueryTable instead of decrypting the env ciphertext sent by A.

We have P4
c≈ P3 by the IND-CCA property of AuthEnc. Also, the ciphertexts generated

during the GenToken protocol are unique from game G2 onwards. So, QueryTable has a

unique entry for each env and hence the server can retrieve ρi values correctly for all

queries.

Game G5 : In this game, we modify the EDBSetup procedure. Instead of creating TSet

from the array T , whenever the SCompute protocol has to find the list corresponding

to a keyword from stag, it scans through all the keywords to find w1 ∈ W such that

c⃝ 2016, Indian Institute of Technology Delhi

35

stag = Fp(KT , w1) (since TSetGetTag is implemented as Fp(KT , ·) in [26]). If such a

keyword is found, then assign t ← T[w1], otherwise Abort. From the no-false-negatives

and no-false-positives properties of TSet [], It can be seen that t retrieved in G5 is the

same as t retireved in G4 except for negligible probability. Hence, P5
c
≈ P4.

Game G6 : In gameG6, once the server receives env fromA, it retrieves (w1, w2, . . . wn, ρ1, ρ2, . . . ρn, j0)

from QueryTable(env). It can now construct a query Q = (ϕ(w̄), attr, f) using the infor-

mation retrieved. It sends this query to the ideal oracle to get (DB(Q), (|DB(w1)|, cnt)).
We modify the way G6 processes bxtokens received from A. For each c, it computes

zc ← Fp(KZ , c), where KZ is calculated from w1 retrieved in above games. On

receiving bxtoken[c] = (bxtoken[c, 2] . . . bxtoken[c, n]), game G6 checks if bxtoken[c, i] =

gFp(KX ,wi)·ρi·zc to continue and aborts if the check fails. If this check succeeds in G6,

then the check for bxtoken[c, i]yc/ρi in XSetAll would have been a success in G5 because,

bxtoken[c, i] = gFp(KX ,wi)·ρi·zc implies bxtoken[c, i]yc/ρi = gFp(KX ,wi)·xindc . Only difference

comes when gFp(KX ,wi)·xindc ∈ XSetAll but bxtoken[c, i] ̸= gFp(KX ,wi)·ρi·zc . This is proven to

be negligible in OSPIR paper. It implies that P6
c
≈ P5. For more details, we refer the

reader to [26].

Game G7 : In game G7, we modify the way the server sends the result and stop to A.

As the server receives (DB(Q), (|DB(w1)|, cnt)) from the oracle, it waits until it receives

|DB(w1)| bxtokens and then sends (stop, (ciph, cnt)), where Kj0
h ← Fτ (Kh, j0), ciph ←

AHE.Enc(Kj0
h ,DB(Q)). This creates a view exactly similar to that of G6. From the

property of AHE, ciph should not be distinguishable from the one created in previous

games. Therefore, P7
c
≈ P6.

c⃝ 2016, Indian Institute of Technology Delhi

	Introduction
	Motivation
	Existing Approaches
	Our Approach

	Preliminaries
	Definitions
	Correctness
	Security

	Building Blocks

	Multi-Client Searchable Symmetric Encryption
	Computing Filtered Average
	Protocol
	Correctness
	Security against adversarial server
	Security against malicious clients

	Support for Range Queries
	Support for Variance and other functions

	Computing General Functions
	Protocol
	Correctness and Security
	Discussion

	Related Work
	Bibliography
	Protocol supporting Range Queries
	Proof of theorem 6: Security against adversarial clients

